Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekzamen_po_Algebre.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
107.24 Кб
Скачать

11. Однородные системы уравнений. Теоремы о существовании ненулевого решения однородной системы. Однородные системы уравнений.

Частный случай.

а11x1+a12x2+..+a1nxn=0

а21x1+a22x2+..+a2nxn=0

а31x1+a32x2+..+a3nxn=0

......

аm1xm+am2xm+..+amnxm=0

Такая система называется однородной, т.к. расширенная матрица отличается от основной матрицы лишь наличием нулевого столбца, который не может повлиять на ранг матрицы.

Однородная система ВСЕГДА СОВМЕСТНА.

Однородная система всегда имеет нулевое уравнение: x1=x2=xn=0

Теорема: Однородная система имеет ненулевые решения тогда и только тогда, когда ранг основной матрицы системы меньше числа неизвестных. Однородные системы решаются методом Гауса.

12. Вектор. Линейные операции над векторами.

Вектором называется направленный отрезок, т.е. отрезок прямой с указанием точек начала А и конца В. Вектор обозначается символом АВ или а.

Расстояние между началом и концом вектора называется его длинной или модулем.

Нулевой вектор-это вектор длина которого равна 0.

Векторы называются коллинеарными, если они лежат на одной или на параллельных прямых.

Векторы, параллельные одной и той же плоскости, называются компланарными.

- Сложение векторов.

Вектор, соединяющий начало первого слагаемого вектора с концом второго, называется суммой этих векторов и обозначается a+b.

- Разность векторов.

Разностью двух векторов a и b называется третий вектор c=a-b, сумма которого с вычитаемым вектором b дает вектор а.

- Умножение вектора на число.

Произведением вектора, а на число k называется новый вектор с, коллинеарный вектору а, имеющий длину |c|=|k|*|a| и то же направление, что и вектор а, если k>0 и противоположное направление, если k<0

13. Базис на плоскости и в пространстве. Теорема о единственности разложения вектора по базису.

Теорема 1. Любой ненулевой вектор, лежащий на данной прямой, образует базис на этой прямой.

Теорема 2. Любая пара неколлинеарных векторов, лежащих в данной плоскости, образует базис на этой плоскости.

Теорема 3. Любая тройка некомпланарных векторов образует базис в пространстве.

14.Ортнормированный базис. Прямоугольная декартова система координат. Координаты вектора

Упорядоченная тройка векторов (i,j,k) называется ортонормированным базисом.

Если выполняются следующие условия:

1. |i|=|j|=|k|=1

2. i .jk(векторы взаимно ⏊)

Совокупность точки 0 и базиса(I,j,k) называется прямоугольной декартовой системой координат в пространстве.

(x,y,z)-прямоугольные (декартовы)координаты вектора.

15.Линейные операции над векторами в координатной форме. Условие коллинеарности векторов (в координатах).

а= (x1,y1,z2), b =(x2,y2,z2)

  1. Сложение (вычитание)

а ;у1 у2;z1 z2)

2)Умножение вектора на число у1,∝z1)

Условия коллинеарности 2-х векторов: а||в = =

Векторы а||в, тогда и только тогда , когда их координаты пропорциональны .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]