Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Тех. матер. Лабор. практ. СВ-2015 (печать).doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.19 Mб
Скачать

Завдання до практичної роботи

Виконати аналіз маркування наступних матеріалів (хімічний склад та властивості) за зазначеними варіантами:

  • чавунів: СЧ 36-56, ВЧ 80-3, АСЧ -2, ЖЧС- 5,5, КЧ 37-12, ЖЧЮШ-22;

  • сталей: Ст.3кп, Ст.6сп, Сталь 55, Сталь 65Г, 09Г2, 16ГС, 15 ХСНД, 15ХА, 18ХГТ, 15ХФ, Р18, 20ХН3МА, Р18Ф2, Р6М5, 12Х18Н10Т;

  • сплавів алюмінію: Д1, Д16, АЛ28, АМц, АМг2, АК6;

  • сплавів міді: Л59, Л96, ЛО70-1, ЛК80-3Л, ЛАЖ60-1-1, Бр. А5, Бр. Б2, Бр. АЖН 10-4-4, ЛМц58-2Л, Бр.КН1-3, ЛАН59-3-2 ;

  • сплавів магнію: Мл2, Мл10, МА5;

  • бабітів: Б83, Б88, БА4, БН12;

  • сплавів титану: ВТ5, ВТ8, ВТ15, ВТ22.

Контрольні запитання

  1. В чому полягає суть маркування матеріалів?

  2. Як маркуються вуглецеві сталі звичайної якості? Що означають цифри в марках таких сталей?

  3. Як маркуються якісні конструкційні та інструментальні вуглецеві сталі?

  4. В чому особливість маркування різних видів чавунів?

  5. Особливості маркування сірих чавунів.

  6. Особливості маркування конструкційних та інструментальних легованих сталей?

  7. Як маркуються сплави на основі міді (латуні та бронзи)?

  8. В чому особливість маркування сплавів на основі алюмінію?

  9. Маркування сплавів титану та магнію.

10 Якими засоби користуються при визначенні механічних властивостей сплавів та їх поведінки при зміні температури?

Рекомендована література

[1, с. 195-214; 2, с. 137-156; 3, с. 75-77; 6, с. 51-58; 12, с. 20-28]

Лабораторна робота 6

Вплив ТЕРМІЧНої ОБРОБКи ВУГЛЕЦЕВИХ СТАЛЕЙ

на їх властивості

Мета роботи

1 Компетентнісне оволодіння методикою виконання операції термічної обробки вуглецевої сталі та наступного контролю.

2 Вивчити вплив:

- температури нагрівання під загартування на структуру сталі та її механічні властивості (твердість);

- швидкості охолодження на структуру сталі та її механічні властивості (твердість);

- температури відпускання на структуру сталі та її механічні властивості (твердість).

Теоретичні відомості

Термічна обробка - це технологічний процес теплової обробки металів і сплавів, у результаті якого змінюються їх будова та влас­тивості. За допомогою термічної обробки можна отримати як підвищені твердість і міцність, так і високі пластичність і в’язкість. Терміч­ній обробці можуть піддаватись усі без винятку метали та сплави. Значна роль у розвитку термообробки належить Д.К. Чернову, який впер­ше встановив, що властивості сталі залежать від її структури, яка визначається температурою нагрівання та швидкістю охолодження.

Основні фактори, що визначають режим термічної обробки, – тем­пература нагрівання, тривалість витримки та швидкість охолодження.

Як приклад розглянемо перетворення, що відбуваються в евтектоїдній сталі при її нагріванні й охолоджуванні з різною швидкістю. Нагрівання сталі вище точки S призведе до утворення з перліту структури аустеніту. Відомо, що при повільному охолодженні сталі після її нагрівання вище критичної точки А1 (727 ºС) відбувається розпад аустеніту на ферито-цементитну суміш, що називається перлітом. Це перетворення складається з двох процесів, які відбуваються одночасно: переходу Feγ у Feα і утворення карбіду заліза Fe3C (цементит).

Перший процес (алотропне перетворення заліза) бездифузійний і тому протікає миттєво.

Другий процес (утворення цементиту) дифузійний, пов’язаний з виходом атомів вуглецю з твердого розчину. Отже, для його завер­шення необхідно витратити певний час. Тому при швидкому охолоджен­ні в точці перлітних перетворень частинки цементиту не встигають сформуватись і ця точка переміщується в бік більш низьких темпе­ратур. При цьому чим швидше охолоджується сталь, тим при нижчій тем­пературі закінчується процес розпаду аустеніту на ферито-цементитну суміш (таблиця 6.1).

Таблиця 6.1 – Температурна поведінка розпаду аустеніту

Швидкість охолоджування, ºС/с

Температура закінчення розпаду, °С

Ступінь переохолод­ження аустеніту,

°С

1/60

1

10

50

100

150

710

680

650

600

550

240

13

43

73

123

173

483

Ферито - цементитні суміші, утворені при різних швидкостях охолоджування, відрізняються розмірами зерна, тобто ступенем дис­персності, а отже, своїми механічними властивостями.

Ферито - цементитні суміші, утворені при швидкостях охолоджуван­ня до 50 ºС/с, називаються перлітом. Його твердість – НВ2000 МПа.

Ферито - цементитні суміші, утворені при швидкостях охолоджу­вання 50-100 ºС/с, мають дрібне зерно і називаються сорбітом. Твердість сорбіту – HB5500 МПа.

Ферито - цементитні суміші, утворені при швидкостях охолоджу­вання 100-150 ºС/с, мають дуже дрібне зерно і називаються троости­том. Твердість трооститу – HB3500 МПа.

При швидкості охолоджування вище 150 ºС/с аустеніт не буде розпадатись на ферито – цементитну суміш. Він охолоджується до температури приблизно 240 ºС, а потім перетворюються в мартенсит, який є перенасиченим твердим розчином впровадження вуглецю в Feα.

Присутність вуглецю в α-залізі, де йому бракує місця в кристалічній решітці (ОЦК), призводить до різкої зміни її розмірів і форми, до викривлень. Тому мартенсит має підвищену твердість (НВ6000 МПа) та крихкість. Він є нестійкою структурою і при нагріванні розпада­ється на ферито - цементитну суміш, яка є трооститом і послідовно переходить при подальшому нагріванні у сорбіт і перліт.

Описані перетворення використовують на практиці, отримуючи шляхом нагрівання та охолодження з різною швидкістю потрібні структуру та властивості сталі. Так, нагріваючи евтектоїдну сталь до стану аустеніту та повільно охолоджуючи її, отримують найбільш мяку структуру (перліт). Це можуть бути такі операції термо­обробки, як відпалювання та нормалізація.

Охолоджуючи нагріту до стану аустеніту евтектоїдну сталь зі швидкістю більше 150 ºС/с, отримують структуру мартенситу. Ця опе­рація термообробки називається гартуванням. Проте після неї сталь використовувати неможливо – вона занадто крихка і має низьку міц­ність. Нагріванням цієї сталі до певних температур (не вище критич­ної) її необхідно привести до більш стійкого стану. Ця операція термообробки називається відпусканням. Таким чином, мета відпускання – отримати бажану структуру (троостит, сорбіт, перліт) та відповідно необхідні властивості сталі. При цьому знижуються її внутрішні напруги.

У процесі швидкого охолоджування сталі може також утворюватись структура, яка є незначно перенасиченим твердим розчином впроваджен­ня вуглецю в Feα у суміші з карбідами заліза і називається бейні­том. Таким чином, бейніт – проміжна структура між трооститом і мартен­ситом, що має високу твердість (НВ5000 МПа).

Перетворення в нагрітій до стану аустеніту сталі можна вивчити, переохолоджуючи її до різних температур і витримуючи при них. Резуль­татом таких експериментальних досліджень є побудовані так звані діагра­ми ізотермічного перетворення переохолодженого аустеніту, які встанов­люють стійкість, тобто тривалість існування переохолодженого, аусте­ніту залежно від температури. За цією діаграмою можна точно визначити, скільки часу переохолоджений до даної температури аустеніт залишає­ться нерозпадним, через який час розпадається та яка структура є про­дуктом цього розпаду. Та якщо діаграма залізо - цементит є єдиною для всіх сплавів, то діаграма ізотермічного перетворення переохолоджено­го аустеніту будується для кожної марки сталі. Для теорії та практики термічної обробки необхідні дві діаграми. Якщо за допомогою діаграми стану Fe - Fe3C встановлюють температуру нагрівання сталі при від­палюванні, нормалізації, загартуванні, то діаграма ізотермічного перетворення переохолодженого аустеніту дає можливість вибрати швид­кість охолодження для отримання необхідної структури та властивостей сталі. Це легко визначити, накладаючи на діаграму криві охолодження сталі.

Отже, основними операціями термообробки сталі є відпалювання, нормалізація, загартування та відпускання.

Відпалюванням (відпалом) називається операція термообробки, що полягає в нагріванні сталі до певної температури, витримці при цій темпера­турі та повільному охолоджуванні разом з піччю. Відпалювання здійс­нюють для зниження твердості, збільшення пластичності та в’язкості і покращення оброблюваності сталі. На практиці, як правило, застосовуються такі види відпалювання.

Відпал 1-го роду без фазових перетворень застосовується для мономорфних та поліморфних металів і сплавів. Відрізняють такі, різновиди відпалу 1 роду: гомогенізуючий, рекристалізаційний та для зняття напружень.

Гомогенізуюче (дифузійне) відпалювання дає можливість усуну­ти дендритну ліквацію у виливках і зливках сплавів кольорових мета­лів і високолегованих сталей. Із зростанням температури збільшується також швидкість дифузії. Тому це відпалювання виконують за високих температур – нагрівають до 1000-1200 ºС, витримують 8-15 годин при цій температурі, потім повільно охолоджують до температури 500-600 ºС після цього, охолодження відбувається з будь-якою швидкістю.

Рекристалізаційний відпал найчастіше застосовується для холоднодеформованих металів і сплавів, щоб зняти наклеп. Ця оброб­ка може бути проміжною та остаточною. У результаті рекристалізації утворюються нові зерна з меншою концентрацією дефектів будови, зніма­ються внутрішні напруження, знижуються міцності та підвищуються пластич­ні властивості металів і сплавів. Температура відпалювання для вуг­лецевих сталей – 680-700 °С, для легованих – 700 - 730 ºС. Тривалість витримки залежить від товщини перерізу виробу, що оброблюється.

Відпал для зняття напружень дає можливість усунути внутріш­ні (залишкові) напруження, внесені до металу попередньою обробкою. Це відпалювання найчастіше здійснюється за температур 400-680 ºС, тривалість витримки – з розрахунку 2,5 хв. на 1 мм товщини перерізу деталі.

Відпал 2-го роду (з фазовою перекристалізацією) виконує­ться для отримання рівноважної структури металів і сплавів, що заз­нають при тепловому впливанні фазових перетворень. Таке відпалюван­ня зменшує концентрацію дефектів решітки, знижує внутрішні напру­ження, подрібнює зерно, виправляє структуру, створену попередньою обробкою. У результаті підвищується пластичність і знижуються міц­ність і твердість металу.

Нормалізація, як різновид повного відпалу застосовується все ширше завдяки значному скороченню часу на термообробку, оскільки охолоджування відбувається на повітрі. Вона застосовується як заключна операція для низьковуглецевих і легованих сталей. Для за­евтектоїдних сталей нормалізація є допоміжною операцією перед гар­туванням.

Загартування здійснюється для підвищення твердості, зносостій­кості та межі пружності. При гартуванні сталь нагрівають вище кри­тичних точок, витримують, а потім швидко охолоджують. Залежно від швидкості охолодження відрізняють різке загартування на мартенсит і помірне – на троостит. Для загартування вуглецевих ста­лей на мартенсит застосовують охолодження у воді, на троостит – у мінеральному маслі. Температура під загартування має бути такою, щоб сталь повністю перейшла до аустенітного стану (рисунок 6.1).

Рисунок 6.1 - Інтервал оптимальних температур для гартування сталей

Для доевтектоїдної сталі температура нагрівання має бути на 30-50 ºС вища лінії, для заевтектоїдної – на 30-50 ºС вище лінії, оскільки вторинний цементит, що зали­шився при такому нагріванні, підвищує твердість і зносостійкість за­гартованої сталі.

Пересичені тверді розчини, що утворюються в результаті загар­тування, метастабільні і при нагріванні починають розпадатись. Про­цеси їх розпаду в сплавах, загартованих з поліморфним перетво-ренням, називаються відпуском (відпусканням), а в сплавах, загартованих для поліморфно­го перетворення, – старінням.

Відпускання призначене для часткового чи повного зменшення метастабільності загартованого на мартенсит матеріалу. Температура нагрівання при відпусканні має не перевищува­ти температуру фазового переходу. Відпускання залежно від темпера­тури нагрівання буває низьким (150-300 ºС), середнім (300-500 ºС) і високим (500-650 ºС) і тією чи іншою мірою зменшує внутрішні напруження та хрупкість, знижує твердість і міцність, підвищує плас­тичність і в’язкість.

Крім звичайної термічної обробки для підвищення механічних властивостей сталі інколи піддають термомеханічній обробці, яка полягає у нагріванні до температури вище критичних точок, витримка, пластична деформація при високій температурі і наступне охолодження з метою одержання особливої мартенситної структури.

Одним з ефективних способів поверхневого зміцнення металів є хіміко-термічна обробка. Вона представляє собою технологічний процес насичення поверхневого шару виробу яким-небудь елементом шляхом дифузії його із зовнішнього середовища. При хіміко-термічній обробці змінюється хімічний склад поверхневого шару деталей.

Механізм насичення металу полягає в адсорбції атомів, що підводяться до виробу; розчиненні адсорбованих атомів в металі; дифузії розчиненої речовини в глибину оброблюваного виробу.

Хіміко-термічна обробка (ХТО) здійснюється при високих температурах, для збільшення швидкості дифузії елементів насичення.

До найбільш розповсюджених методів ХТО відносяться цементація, азотування, ціанування, дифузійна металізація.

Цементація – процес насичення поверхневого шару сталі вуглецем.

Цементації піддаються низьковуглецеві сталі (0,1...0,3 % С). В тому числі і леговані. Цементацію здійснюють твердим карбю-ризатором (деревним вугіллям з додаванням ВаСО3, NaCO3, К2СО3) при температурі 900...950 оС в металевих ящиках протягом 8...14 год. Газова цементація здійснюється в закритих камерних печах, заповнених газом (природним, окислом вуглецю, метаном, пропаном та ін.), при температурі 930...950 оС протягом 8...12 год.

Азотування – процес дифузійного насичення поверхні виробу азотом. Азотують леговані сталі (35ХМЮА, 35ХЮА і ін.). Перед азотуванням заготовку піддають загартуванню та високому відпус-канню. Азотування проводять в печах при температурі 500...600 оС. Активний азот, що виділяється при дисоціації аміаку, шляхом дифузії проникає з іншими елементами в поверхневий шар і утворює дуже тверді хімічні сполуки – нітриди (AlN, MoN, Fe3N та ін.).

Азотування на глибину 0,2...0,5 мм продовжується 25...60 год і в цьому його основний недолік.

Ціанування – насичення поверхневого шару одночасно вуглецем і азотом; воно буває рідинним і газовим.

Дифузійна металізація – процес поверхневого насичення стальних деталей металами (алюмінієм, хромом і ін.) для підвищення жаростійкості, корозійної стійкості, твердості та зносостійкості.

Алітування – процес хіміко-термічної обробки; дифузійне насичення поверхневого шару сталі алюмінієм при нагріванні у відповідному твердому або рідкому середовищі.

Хромування – процес дифузійного насичення поверхневого шару сталі хромом при нагріванні у відповідному середовищі.