Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекц.4 ФХМИ Растворы.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
345.09 Кб
Скачать

Лекция 4. Растворы, приготовление растворов различной концентрации.

План.

  1. Понятие о растворах и растворимости. Классификации растворов.

  2. Процессы, сопровождающие растворение.

  3. Технические способы выражения концентрации растворов (массовая доля вещества, массово-объёмная концентрация, объёмная доля вещества, мг%, промилле).

  4. Аналитические способы выражения концентрации растворов: молярная, молярная концентрация эквивалентов, титр.

  5. Расчётные формулы и правила приготовления растворов кислот, солей и щелочей технических и аналитических концентраций.

  6. Лабораторная посуда, весы, необходимые для приготовления растворов технической и аналитической концентрации.

  7. Фиксаналы: назначение, использование в лаборатории. Правила приготовления растворов из фиксаналов.

  8. Виды термометров, ареометров. Термометрия.

Д.з. по уч. Пустоваловой стр. 110-130.

  1. Понятие о растворах и растворимости. Классификации растворов.

Дисперсными системами называются системы, состоящие из некоторого вещества, в котором в очень мелком виде распределено другое вещество. Распределенное вещество называется дисперсной фазой, а вещество, в котором распределена дисперсная фаза – дисперсионной средой. Если частицы дисперсной фазы имеют размер порядка размеров молекул (<10–8 м), то дисперсную системуРазличные типы дисперсных систем являются предметом изучения в Коллоидной химии - одном из важнейших разделов химической науки. называют раствором (истинным раствором).

Простейшие составные части раствора, которые могут быть выделены в чистом виде, называются компонентами раствора. Обычно компонент, находящийся в избытке, считают растворителем, а остальные – растворенными веществами. Если один из компонентов – вода, то её обычно принимают за растворитель.

Растворами называются гомогенные системы, содержащие не менее двух веществ. Могут существовать растворы твердых, жидких и газообразных веществ в жидких растворителях, а также однородные смеси (растворы) твердых, жидких и газообразных веществ. Как правило, вещество, взятое в избытке и в том же аг­регатном состоянии, что и сам раствор, принято считать растворителем, а компонент, взятый в недостатке - растворенным веществом.

Раствор, в котором данное вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в равновесии с растворяемым веществом, называют насыщенным, а раствор, в котором еще можно растворить добавочное количество данного вещества, - ненасыщенным.

Раствор, содержащий растворенного вещества больше, чем его должно быть в данных условиях в насыщенном растворе, на­зывается пересыщенным. Пересыщенные растворы представляют собой неустойчивые, неравновесные системы, в которых наблю­дается самопроизвольный переход в равновесное состояние. При этом выделяется избыток растворенного вещества, и раствор ста­новится насыщенным.

Классификация растворов.

1. По характеру растворителя:

1) водные;

2) неводные: растворы в органических растворителях (спирты, эфиры, ацетон, бензол).

2. По точности выражения концентрации: приблизительные, точные и эмпирические.

3. По соотношению преобладания числа частиц, переходящих в раствор или удаляющихся из раствора, различают растворы на­сыщенные, ненасыщенные и пересыщенные.

4. По относительным количествам растворенного вещества и растворителя растворы подразделяют на разбавленные и концентрированные.

Разбавленные растворы - растворы с небольшим содержанием растворен­ного вещества; концентрированные растворы - с большим содержанием растворенного вещества.

5. По агрегатному состоянию растворителя: растворение твёрдых веществ, жидкостей и газов.

Газообразными растворами являются воздух и другие смеси газов.

К жидким растворам относят гомогенные смеси газов, жид­костей и твердых тел с жидкостями.

Твёрдыми растворами являются многие сплавы, например, металлов друг с другом, стёкла. Наибольшее значение имеют жидкие смеси, в которых растворителем является жидкость. Наи­более распространенным растворителем из неорганических ве­ществ, конечно же, является вода. Из органических веществ в качестве растворителей используют метанол, этанол, диэтиловый эфир, ацетон, бензол и др.

В процессе растворения частицы (ионы или молекулы) рас­творяемого вещества под действием хаотически движущихся час­тиц растворителя переходят в раствор, образуя в результате бес­порядочного движения частиц качественно новую однородную систему. Способность к образованию растворов выражена у разных веществ в различной степени. Одни вещества способны смешиваться друг с другом в любых количествах (вода и спирт), другие - в ограниченных (хлорид натрия и вода).

В зависимости от то­го, электронейтральными или заряженными частицами являются компоненты раствора, их подразделяют на молекулярные (растворы неэлектролитов) и ионные (растворы электролитов). Одна из характерных особенностей растворов электролитов за­ключается в том, что они проводят электрический ток.

Растворение веществ сопровождается тепловым эффектом: выделе­нием или поглощением теплоты - в зависимости от природы вещества. При растворении в воде, например, гидроксида калия, серной кислоты наблюдается сильное разогревание раствора, т.е. выделение теплоты, а при растворении нитрата аммония - сильное охлаждение раствора, т.е. поглощение теплоты. В первом случае осуществляется экзотермический процесс (∆H < 0), во втором - эндотермический (∆H > 0). Тепло­та растворения ∆H - это количество теплоты, выделяющееся или поглощающееся при растворении 1 моль вещества. Так, для гидрокси­да калия ∆H ° = -55,65 кДж/моль, а для нитрата аммония ∆H ° = +26,48 кДж/моль.

В результате химического взаимодействия растворенного вещества с растворителем образуются соединения, которые называют сольватами (или гидратами, если растворителем является вода). Образование таких соединений роднит растворы с химическими соединениями.

Растворимость – способность вещества растворяться в том или ином растворителе. Она характеризуется концентрацией насыщенного раствора. Растворимость часто выражают количеством граммов растворяемого вещества в 100 г растворителя. Если раствор содержит растворённого вещества больше, чем это соответствует растворимости при данной температуре, то он называется пересыщенным. Возможность существования пересыщенного раствора объясняется трудностью возникновения центров кристаллизации. В случае растворения твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает. На растворимость газов большое влияние оказывает давление.

Процесс растворения твердого вещества в жидкости протекает следующим образом. Если поместить твердое тело в соответствующий растворитель, от его поверхности постепенно отрываются отдельные молекулы, которые благодаря диффузии равномерно распределяются по всему объему жидкости. Причем отделение молекул от поверхности твердого вещества вызывается двумя причинами: с одной стороны, их собственным движением, а с другой — притяжением со стороны молекул растворителя. В растворах (как и в газах, но только гораздо медленнее) протекают процессы диффузии, благодаря которым создается и поддерживается одинаковая во всем объеме концентрация растворенного вещества. Одновременно с разрушением кристаллической решетки твердого тела происходит взаимодействие между растворителем и растворяемым веществом, при котором выделяется больше тепла, чем его расходуется на разрушение кристаллической решетки.

В процессе растворения большинства веществ их молекулы прочно связываются с молекулами растворителя, образуя сольваты (гидраты, если растворителем является вода). Образование этих соединений обусловлено полярностью молекул растворяемого вещества, благодаря которой они притягивают полярные молекулы растворителя. В большинстве случаев гидраты являются достаточно неустойчивыми соединениями, разлагающимися уже при выпаривании растворов. Но иногда молекулы воды очень прочно связаны с молекулами растворенного вещества, и при выделении последнего из раствора гидратная вода входит в состав его кристаллов (глюкоза, магния сульфат, меди сульфат, квасцы, кодеин, которые являются кристаллогидратами).

Однако наряду с процессом растворения происходит обратный процесс — кристаллизация. При постоянном увеличении концентрации раствора по мере растворения вещества в определенный момент скорость растворения становится равной скорости кристаллизации, т.е. устанавливается состояние динамического равновесия, при котором в единицу времени растворяется столько же молекул, сколько и выделяется обратно из раствора. При этих условиях концентрация раствора перестает увеличиваться, т.е. раствор становится насыщенным.

Великий русский химик Д.И. Менделеев создал химическую теорию растворов, которую он обосновал многочисленными экспериментальными данными, изложенными в его книге «Исследова­ния водных растворов по их удельному весу», вышедшей в 1887 г. «Растворы суть химические соединения, определяемые силами, дейст­вующими между растворителем и растворенным веществом», - писал он в этой книге. Теперь известна природа этих сил. Сольваты (гидра­ты) образуются за счет донорно-акцепторного, ион-дипольного взаимо­действий, за счет водородных связей, а также дисперсионного взаимодействия (в случае растворов родственных веществ, например бензола и толуола).

Таким образом, растворение - не только физический, но и химиче­ский процесс. Растворы образуются путем взаимодействия частиц растворенного вещества с частицами растворителя. Ученик Д.И. Менделеева Д.П. Коновалов всегда подчеркивал, что между химическими соединениями и растворами нет границ.