- •Самарский государственный университет путей сообщения, 2005, 2011 Оглавление
- •Введение
- •2. Строительные лебёдки
- •3. Подвесные лебедки (тали и электротали)
- •4. Строительные подъемники
- •5. Башенные строительные краны
- •5.1. Назначение
- •5.2. Классификация
- •5.3. Система индексации
- •5.4. Конструкция
- •6. Стреловые самоходные краны
- •6.1. Назначение
- •6.2. Классификация
- •6.3. Система индексации
- •6.4. Конструкция
- •7. Козловые краны
- •8. Кабельные краны
- •9. Устойчивость кранов
- •10. Устройства безопасности
- •11. Техническое освидетельствование кранов
- •12. Перебазировка строительных кранов
- •13. Монтаж башенных кранов
- •14. Лабораторные упражнения и контроль усвоения материала
- •Библиографический список
- •Самарский государственный университет путей сообщения, 2005, 2011 Введение
- •Лабораторная работа №11
- •Теоретическая часть Грузозахватные устройства
- •1. Крюки, крюковые обоймы
- •2. Стропы
- •3. Бадьи, грейферы
- •4. Грузоподъемные электромагниты
- •5. Расстроповка конструкций
- •Лабораторные упражнения и контроль усвоения материала
- •Библиографический список
2. Строительные лебёдки
Строительные лебедки представляют собой грузоподъёмные механизмы, предназначенные для подъёма или перемещения грузов на строительно-монтажных, ремонтных и погрузочно-разгрузочных работах с помощью каната, навиваемого на барабан или протягиваемого через рычажный механизм. Их подразделяют:
- по виду привода – на ручные (с ручным приводом) и приводные (с механическим приводом);
- по назначению – на подъёмные (для подъёма груза), тяговые (только для перемещения груза по горизонтальной или наклонной поверхности);
- по числу барабанов – одно-, двухбарабанные и без барабана (с канатоведущим шкивом) и рычажные.
Главным параметром лебёдок является тяговое усилие каната (кН).
Ручные лебедки приводятся в действие мускульной силой рабочего и могут быть однобарабанными или рычажными (без барабана).
Лебедки в рабочем положении крепятся на горизонтальной площадке и могут работать на открытом воздухе при температуре от - 40 до +40 °С.
Все лебедки имеют единую конструктивную схему, выполнены двухскоростными, оборудованы автоматически действующими грузоупорными дисковыми тормозами и различаются между собой тяговым усилием, канатоемкостью барабана, числом валов, габаритами и т. п.
Каждая лебедка (рис. 2.1) состоит из двух боковин 8, соединенных стяжными болтами 15, ведущего (рабочего) вала 1 с двумя приводными рукоятками 12, одного или двух промежуточных валов 4, блок-шестерни 13, зубчатых колес 5, 6, 9, 11, грузоупорного тормоза, оси 7 с гладким барабаном 14 для навивки каната. Валы передач вращаются в подшипниках скольжения боковин. Ось барабана жестко закреплена в боковинах. Автоматический грузоупорный тормоз состоит из храпового останова (храпового колеса 2 с собачкой 3), дискового тормоза 10 и обеспечивает торможение барабана при опускании груза и мгновенную остановку его, если рабочий отпустит приводную рукоятку. Подъем или перемещение груза осуществляется вращением приводных рукояток; при этом собачка скользит по зубьям храпового колеса. Опускают груз вращением приводных рукояток в обратном направлении, причем собачка находится в зацеплении с храповым колесом. Изменение скорости подъема, опускания или перемещения груза производятся передвижением шестерни 11 вдоль оси промежуточного вала и вводом ее в зацепление с блок-шестерней.
Рис. 2.1. Конструктивная схема ручной лебёдки
Лебедки обеспечивают наибольшее тяговое усилие каната 12,5...80 кН, имеют канатоемкость барабана 50...200 м.
Приводные лебедки приводятся в действие, как правило, от электродвигателей, подключаемых к сети переменного тока, напряжением 220/380 В. По числу барабанов лебедки могут быть одно- и двухбарабанными, а по виду кинематической связи между двигателем и барабаном — реверсивными, маневровыми и зубчато-фрикционными.
У реверсивных однобарабанных лебедок – жесткая неразмыкаемая кинематическая связь между электродвигателем и барабаном; подъем и опускание груза осуществляются реверсируемым электродвигателем. Маневровые двухбарабанные лебедки имеют размыкаемую жесткую кинематическую связь между электродвигателем, главным и вспомогательным барабанами, что позволяет подключать к двигателю с помощью кулачковых муфт попеременно один из барабанов.
Однобарабанные реверсивные лебедки выполнены по единой конструктивной схеме, имеют П-образную компоновку и рассчитаны на легкий режим работы. Они могут использоваться как самостоятельно действующие подъемно-транспортные механизмы, а также входить в комплект строительных подъемников и других подъемных устройств, не предназначенных для подъема людей.
Каждая реверсивная лебедка (рис. 2.2) состоит из рамы, на которой смонтированы электродвигатель 4, пусковая аппаратура, цилиндрический двухступенчатый зубчатый редуктор 5 и гладкий барабан 1, установленный на тихоходном валу редуктора. Вал электродвигателя соединен с быстроходным валом редуктора упругой втулочно-пальцевой муфтой 3, внешняя цилиндрическая поверхность которой служит одновременно шкивом автоматического постоянно замкнутого двухколодочного тормоза 2 с электрогидравлическим толкателем, предназначенным для размыкания колодок тормоза. Толкатель представляет собой механизм, преобразующий вращательное движение ротора двигателя в возвратно-поступательное движение штока, размыкающего колодки. Барабаны лебедок могут крепиться на валу редуктора консольно и не имеют выносной опоры. Вал барабана опирается на выносную опору 7 через подшипник. Барабан лебедки соединяется с выходным валом редуктора с помощью зубчатой
муфты 6.
Пусковая аппаратура лебедок включает реверсивный магнитный пускатель и кнопочный пост управления, с помощью которого осуществляется отключение работающего двигателя, его полный останов и включение на обратное направление вращения.
Управляют лебедкой с помощью электромагнитных пускателей кулачкового контроллера и кнопок управления. Дистанционное управление лебедкой осуществляется путем отсоединения шкафа с электроаппаратурой от лебедки, его переноса и крепления в необходимом для работы месте.
Реверсивные лебедки обеспечивают тяговое усилие каната 4,5...125 кН, имеют диаметр барабана 200...250 мм, канатоемкость – 80...800 м.
Рис. 2.2. Кинематическая схема реверсивной лебедки
У зубчато-фрикционных лебедок (рис. 2.3) между двигателем и барабаном с помощью конусной или ленточной фрикционной муфты обеспечивается плавно размыкаемая в процессе работы кинематическая связь. Подъем груза осуществляется двигателем при включенной муфте, опускание груза — за счет собственной силы тяжести при выключенной муфте.
От электродвигателя 1 через ременную передачу 2 вращение передается зубчатой паре 4, ведомое колесо которой снабжено зубчатым фрикционным выступом 6. При повороте рукояти 12 барабан 8 поднимается и входит в зацепление с зубчатой парой. Барабану передается тот или иной вращающий момент, происходит подъем груза. Опускание груза происходит под действием собственного веса.
Регулирование скорости опускания достигается с помощью ленточного тормоза, состоящего из тормозного шкива 7, которым служит верхняя часть барабана и металлической ленты 5 с фрикционными накладками. При нажатии на педаль 3 противовес 13 опускается и тормозная лента, охватывающая тормозной шкив, сжимает его, тем самым, уменьшая скорость опускания. Для застопоривания груза на нужной высоте служит храповой останов, состоящий из храпового колеса 10 и собачки 11, которая при подъеме груза проскальзывает по зубьям, а при опускании может автоматически входить в зацепление.
а)
б)
Рис. 2.3. Зубчато-фрикционная лебедка: а – общий вид; б – храповой останов
