- •Глава 7. Неопределенный интеграл
- •§1. Понятие неопределенного интеграла
- •Основные свойства неопределенного интеграла
- •§2. Таблица основных интегралов
- •§3. Простейшие правила интегрирования
- •§4. Интегрирование подстановкой (заменой переменной)
- •§5. Метод интегрирования по частям
- •§6. Интегрирование элементарных дробей.
- •§7. Интегрирование рациональных дробей.
- •§8. Интегрирование некоторых тригонометрических функций.
- •1) Интеграл вида .
- •2) Интеграл вида если
- •3) Интеграл вида если
- •4) Интеграл вида
- •5) Интеграл произведения синусов и косинусов
- •§9. Интегрирование некоторых иррациональных функций.
- •Глава 8. Определенный интеграл
- •§1. Определение определенного интеграла.
- •§2. Геометрический смысл определенного интеграла.
- •§3. Формула Ньютона-Лейбница.
- •§4. Основные свойства определенного интеграла.
- •8. Теорема Барроу. Производная определенного интеграла по переменному верхнему пределу равна подинтегральной функции в точке, равной верхнему пределу, т.Е.
- •§5. Вычисление определённого интеграла.
- •§6. Геометрическое применение определённого интеграла.
- •§7. Несобственные интегралы с бесконечными пределами (несобственные интегралы первого рода).
- •§8. Кратные интегралы.
- •Глава 9. Дифференциальные уравнения
- •§1. Обыкновенные дифференциальные уравнения.
- •§2. Дифференциальные уравнения первого порядка.
- •Уравнения с разделяющимися переменными
- •Разделяем переменные:
- •Подставляем полученное соотношение в исходное уравнение:
- •§3. Численные методы решения дифференциальных уравнений.
- •§4. Дифференциальные уравнения высших порядков.
- •§5. Уравнения, допускающие понижение порядка.
- •Уравнения, не содержащие явно искомой функции
- •§6. Линейные дифференциальные уравнения высших порядков.
- •6.1. Линейные однородные дифференциальные уравнения с произвольными коэффициентами.
- •Общее решение линейного однородного дифференциального
- •6.2. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.
- •При этом многочлен называется характеристическим многочленом дифференциального уравнения.
- •§9. Линейные неоднородные дифференциальные уравнения с произвольными коэффициентами.
- •§10. Линейные неоднородные дифференциальные уравнения с постоянными коэффициентами.
- •§11. Нормальные системы обыкновенных дифференциальных уравнений.
- •Нормальные системы линейных однородных дифференциальных
- •Глава 10. Ряды
- •§1. Основные определения.
- •Критерий Коши. (необходимые и достаточные условия сходимости ряда)
- •§2. Ряды с неотрицательными членами.
- •2.1. Признак сравнения рядов с неотрицательными членами.
- •2.2. Признак Даламбера.
- •2.3. Признак Коши. (радикальный признак)
- •2.4. Интегральный признак Коши.
- •§3. Знакопеременные ряды.
- •§4. Функциональные последовательности.
- •§5. Степенные ряды.
- •1) Интегрирование степенных рядов.
- •2) Дифференцирование степенных рядов.
- •3) Сложение, вычитание, умножение и деление степенных рядов.
- •§6. Разложение функций в степенные ряды.
- •Если применить к той же функции формулу Маклорена
- •§7. Решение дифференциальных уравнений с помощью степенных рядов.
§5. Метод интегрирования по частям
Пусть u=u(x) и v=v(x) – непрерывные дифференцируемые функции.
Тогда d(uv)=udv+vdu.
Интегрируя это равенство, получим
или
(1)
Формула (1)- формула интегрирования
по частям. С её помощью вычисление
интеграла
сводится к вычислению
,
который может оказаться проще исходного.
Интегрирование по частям состоит в том, что подынтегральное выражение исходного интеграла представляется в виде двух сомножителей u и dv (это, как правило, можно осуществить несколькими способами). Затем, после нахождения v и du используется формула интегрирования по частям. Иногда эту формулу используют несколько раз при решении одного интеграла.
Некоторые типы интегралов, которые удобно вычислять методом интегрирования по частям:
I. Интеграл вида:
где P(x)-
многочлен, k- число.
II.Интегралы вида
k- любое действительное число.
Удобно
обозначить за dv =
,
а за u- оставшийся
множитель (lnx, arcsinx
. . .).
III.
,
где a и b-
числа; - возвратные интегралы.
За u можно принять
и дважды интегрировать по частям (причем
второй раз за
)
Примеры:
1)
2)
3)
Методом
интегрирования по частям можно также
вычислить интегралы:
и многие другие.
§6. Интегрирование элементарных дробей.
Определение: Элементарными называются дроби следующих четырех типов:
I.
III.
II.
IV.
m, n – натуральные числа (m 2, n 2) и b2 – 4ac <0.
Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.
II.
Рассмотрим метод интегрирования элементарных дробей вида III.
Интеграл дроби вида III может быть представлен в виде:
Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.
Рассмотрим применение указанной выше формулы на примерах.
Пример.
Вообще говоря, если у трехчлена ax2 + bx + c выражение b2 – 4ac >0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.
Пример.
Пример.
Рассмотрим теперь методы интегрирования простейших дробей IV типа.
Сначала рассмотрим частный случай при М = 0, N = 1.
Тогда интеграл вида
можно путем выделения в знаменателе
полного квадрата представить в виде
.
Сделаем следующее преобразование:
.
Второй интеграл, входящий в это равенство, будем брать по частям.
Обозначим:
Для исходного интеграла получаем:
Полученная формула называется
рекуррентной. Если применить ее n-1
раз, то получится табличный интеграл
.
Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.
В
полученном равенстве первый интеграл
с помощью подстановки t
= u2 + s
приводится к табличному
,
а ко второму интегралу применяется
рассмотренная выше рекуррентная формула.
Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.
Пример:
