- •Cодержание
- •Введение
- •Радиоактивные вещества и радиохимические процессы
- •1.1. Элементарные частицы
- •1.2. Протонно-нейтронный состав ядер
- •1.3. Радиоактивные распады и излучения
- •1.4. Законы радиоактивного распада
- •1.5. Радиоактивные семейства
- •1.6. Радиоактивное равновесие
- •1.7. Взаимодействие ядерного излучения с веществом
- •Вопросы для самопроверки
- •5. Радиоактивные распады и излучения.
- •Источники и классификация радиоактивных отходов
- •2.1. Ядерный топливный цикл
- •2.2. Источники радиоактивных отходов
- •2.2.1. Радиоактивные отходы ядерного топливного цикла
- •2.3. Классификация радиоактивных отходов
- •2.4. Газообразные выбросы аэс
- •2.5. Образование жидких радиоактивных отходов на аэс
- •Назначение спецводоочисток и перерабатываемый на них объем воды за год, (блок 1000 мВт)
- •2.6. Образование твердых радиоактивных отходов на аэс
- •2.7. Отходы, образующиеся при обращении с оят
- •Методы обращения с радиоактивными отходами на аэс
- •3.1. Цель и задачи обращения с рао
- •3.1.2. Стадии обращения с радиоактивными отходами
- •3.1.3. Выбор технологий с учетом технических факторов
- •3.1.4. Минимизация отходов
- •3.2. Очистка газообразных выбросов
- •3.2.1 Задачи систем вентиляции и газоочистки
- •3.2.2. Организация вентиляционной системы
- •3.3. Обработки жидких радиоактивных отходов
- •3.3.1. Способы разделения и концентрирования.
- •3.3.2 Основные стадии очистки жро
- •3.3.3. Отбор проб и экспресс-анализ основных характеристик жро
- •3.3.4. Реагентное выделение и осаждение радионуклидов
- •3.3.5. Сорбционные методы. Ионный обмен
- •3.3.6. Основы расчета адсорберов
- •3.3.7. Фильтрация через мембраны
- •3.3.8. Основы расчета мембранного разделения
- •3.3.9. Термическое концентрирование рао
- •Отверждение жидких рао
- •4.1. Глубокое упаривание радиоактивных солевых растворов
- •4.2. Иммобилизация отходов в битумы и полимеры
- •4.3. Иммобилизация радиоактивных отходов в цемент
- •4.4. Кальцинация
- •4.5. Остекловывания низко- и среднеактивных отходов
- •Глубокое упаривание радиоактивных солевых растворов.
- •Иммобилизация отходов в битумы и полимеры.
- •Иммобилизация радиоактивных отходов в цемент.
- •Переработка твердых рао
- •5.1. Предварительная обработка тро
- •5.2. Прессование тро
- •Переработка твердых рао.
- •Прессование тро.
- •Обращение с ядерным топливом
- •6.1. Хранение свежего ядерного топлива (ят)
- •6.2. Хранение отработавшего ядерного топлива
- •6.3. Переработка оят
- •Обращение с ядерным топливом.
- •Хранение отработавшего ядерного топлива.
- •Правовое регулирование обращения с радиоактивными отходами
- •7.1. Нормативно-правовое обеспечение
- •7.2. Основные нормативные документы
- •7.2.1. Нормы Радиационной Безопасности Украины (нрбу-97)
- •7.2.2. Основные санитарные правила обеспечения радиационной безопасности Украины
- •Приложения
- •Приложение 2. Пересчет активности радиоактивного вещества в массу
- •Приложение 3. Закон радиоактивного распада
- •Приложение 4. Выход радиоактивных веществ на аэс
- •Приложение 4.5. Нормативное поступление трапных вод в накопители при нормальной эксплуатации и перегрузке п 4.5.1. Режим нормальной эксплуатации
- •П4.5.2. Режим максимального единовременного слива в систему очистки трапных вод.
- •Трапные воды, образующиеся при эксплуатации аэс
- •Поступления трапных вод в межремонтный период, (блок 440 мВт)
- •Приложение 6. Словарь терминов
- •Литература
- •Основи поводження з радіоактивними відходами на атомних електростанціях
- •65044, Україна, м. Одеса, просп. Шевченка, 1, корп.5
5.2. Прессование тро
Механическая обработка ТРО включает операции по уменьшению размеров и сокращению их объема путем прессования. Коэффициент уменьшения объема при применении механических методов зависит от характеристик отходов (плотность, прочность и т.п.) и применяемых средств.
Основными механическими методами обработки ТРО являются компактирование, или прессование, с предшествующей фрагментацией крупных объектов, элементов оборудования, которые неприемлемы для прессования и по своим физическим размерам не позволяют эффективно использовать объемы стандартных контейнеров для иммобилизации.
Прессование под низким давлением. Установки прессования различаются по давлению, которое пресс может развивать при сжимании отходов. Прессы низкого давления обычно развивают усилие до 10 МН. Различают установки, на которых прессование производится:
внутри стальных бочек;
внутри ящиков;
пакетировкой;
в винтовом прессе типа экструдера.
Коэффициент сокращения объема в результате прессования обычно не превышает 10 и зависит от состава ТРО: максимальный коэффициент у металлических отходов (8-10), минимальный - у резинотехнических изделий и полимерных материалов (2-3).
Для прессования используют вертикальные и горизонтальные прессы [81].
В Нидерландах и Великобритании получило распространение прессование ТРО в кипы с постоянной площадью сечения и толщиной, определяемой количеством отходов[82]. В национальной лаборатории Айдахо и на заводе в Роки-Флетс ТРО прессуют в тюки [83]. Наиболее распространено прессование ТРО, проводимое внутри стандартизованных бочек, как, например, в Сакле, Франция, и в Маундской лаборатории, США [6.10]. Сведения о прессовании ТРО в бочки с использованием прессов низкого и высокого давления приведены в обзоре [75].
Прессование в бочках часто используется как подготовка отходов к суперпрессованию. Бочки со спрессованными отходами в дальнейшем поступают на суперпресс, где прессованию подвергается вся бочка вместе с отходами.
В качестве одного из типичных примеров рассмотрим пакетировочную установку прессования в ГУП МосНПО "Радон" [27]. Она выполнена на базе серийного брикетировочного пресса БА 1330, произведенного Азовским ПО "Донпрессмаш", и состоит из:
гидравлического пресса, развивающего усилие 100 т на последней ступени,
узла выгрузки спрессованных брикетов,
системы газоочистки.
Пакетировочный пресс снабжен герметичным кожухом над камерой прессования. Камера снабжена дверью для загрузки металлических барабанов с отходами для прессования, которые помещают под пуансон пресса. Цикл прессования состоит из двух стадий: продольного и поперечного прессования. После прессования брикет устойчивой формы размерами 320x320x600 мм через шиберное отверстие пресса попадает в бочку объемом 200 л. Узел выгрузки расположен в герметичном боксе, оборудован кантователем бочек и дверью для установки в бокс пустых и выемки заполненных спрессованными брикетами бочек. По мере заполнения на 2/3 объема бочка грузозахватным механизмом вынимается из герметичного бокса, закрывается герметичной крышкой и отправляется на спецавтомобиле ОТ-20 для заливки в бочку цементного раствора, замешенного на низкосолевых низкоактивных ЖРО. Система газоочистки предназначена для очистки отходящих газов и для создания необходимого разряжения в узлах установки и состоит из газоходов, камеры фильтрования (фильтры ФА-1) и вытяжного вентилятора. Схема установки прессования приведена на рисунке 5.2.
Рис. 5.2. Схема установки прессования на базе вертикального гидравлического пресса (1-защитный бокс,2-гидротолкатель, 3-пресс, 4-привод пресс формы, 5-насосная станция, 6- пресс-форма контейнер, 7- транспортная тележка).
Прессование под высоким давлением. Прессы высокого давления, также называемые суперкомпакторами., позволяют добиться наибольшего сокращения объема. После обработки высоким давлением из первичных бочек с отходами получаются так называемые "таблетки" спрессованных отходов. В таких прессах используется давление 10 МН или выше.
Суперкомпактирование используется для уменьшения объема разных типов отходов, включая бумагу, пластмассы и ткани, обычно относящиеся к категории сжимаемых отходов, а также такие материалы, как металлы, бетонный мусор, стекло, дерево, песок и т. д., которые не удается сжимать прессами с низким усилием. Прессованием под высоким давлением можно получить продукт плотностью >90% от его теоретической плотности. Спрессованные "таблетки" радиоактивных отходов обычно помещают в бочки большего диаметра для последующей иммобилизации в цемент.
Применение суперкомпакторов экономически оправдано при больших объемах ТРО.
Далее, ТРО помещают в здание хранилища отходов. Емкость ячеек для хранения ТРО рассчитывается так, чтобы они были заполнены не ранее, чем через 10 лет после начала эксплуатации АЭС. Предусматривается возможность создания дополнительных ячеек. Отдельно хранятся твердые радиоактивные отходы высокой степени загрязненности, для них емкость ячеек рассчитана на хранение отходов в течение всего срока работы АЭС, то есть в течение 30 лет. Предусматривается возможность извлечения части ТРО из ячеек и переправление в региональные хранилища.
Ячейки хранилищ выполнены из железобетона, дно ячеек находится выше уровня грунтовых вод, имеет гидроизоляцию снаружи строительных конструкций и поддон из нержавеющей стали. Кровля и перекрытие над хранилищем отходов исключают попадание атмосферных осадков в ячейки для хранения ТРО. Сами ячейки находятся под строгим дозиметрическим контролем, для чего по периметру хранилища сделаны наблюдательные скважины, из которых регулярно отбираются пробы воды для анализа на содержание радиоактивных веществ.
Вопросы для самопроверки.
