- •Содержание
- •Введение
- •1. Рабочая программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Требования к уровню освоения содержания дисциплины
- •1.3. Требования государственного стандарта образования к знаниям и умениям студента и их реализация в курсе
- •1.4. Внутридисциплинарные связи
- •1.5. Объем часов по дисциплине и его распределение по видам занятий
- •1.6. План лекций с кратким содержанием, количеством часов, отводимых на каждую тему
- •1.7. План практических, лабораторных занятий, семинаров
- •1.8. Структура и содержание самостоятельной работы
- •1.9. Темы расчетно-графических работ
- •2. Краткий конспект лекций
- •2.1. Лекция № 1
- •2.2. Лекция № 2
- •2.3. Лекция №3
- •2.4. Лекция № 4
- •2.5. Лекция № 5
- •2.6. Лекция № 6
- •2.7. Лекция № 7
- •2.8. Лекция № 8
- •2.9. Лекция № 9
- •2.10. Лекция № 10
- •I. Критерий наибольших нормальных напряжений
- •II. Критерий наибольших линейных деформаций
- •III. Критерий наибольших касательных напряжений
- •IV. Критерий удельной потенциальной энергии формоизменения
- •V. Теория Мора
- •2.11. Лекция № 11
- •2.12. Лекция № 12
- •2.13. Лекция № 13
- •2.14. Лекция № 14
- •3.1.2. Пример решения ргр № 1
- •4. Построение эпюры напряжений.
- •3.2. Расчетно-графическая работа № 2 Расчет статически неопределимого бруса на растяжение (сжатие)
- •3.2.1. Варианты заданий к ргр № 2
- •3.2.2. Пример решения ргр № 2
- •1. Выбор основной системы.
- •3.3. Расчетно-графическая работа № 3 Определение геометрических характеристик поперечного сечения
- •3.3.1. Варианты заданий к ргр № 3
- •3 .3.2. Пример решения ргр №3
- •3.4. Расчетно-графическая работа № 4 Напряженное состояние и теории прочности
- •3.4.1. Варианты заданий к ргр № 4
- •3.4.2. Пример решения ргр № 4
- •3.5. Расчетно-графическая работа № 5 Расчёт вала на кручение
- •3.5.1. Варианты заданий к ргр № 5
- •3.5.2. Пример решения ргр № 5
- •3.6.2. Пример решения ргр № 6
- •3.7. Расчетно-графическая работа № 7 Определение линейных и угловых перемещений в однопролётной балке
- •3.7.1. Варианты заданий к ргр № 7
- •3.7.2. Пример решения ргр № 7
- •3.8. Расчетно-графическая работа № 8 Устойчивость сжатых стержней
- •3.8.1. Варианты заданий к ргр № 8
- •3.8.2. Пример решения ргр № 8
- •4. Методические указания к выполнению лабораторных работ
- •4.1. Расчеты на прочность при растяжении / сжатии
- •4.1.1. Испытание образца на растяжение
- •4.1.2. Испытание образца на сжатие.
- •4.2. Практические расчёты на срез и смятие
- •И изгибающих моментов
- •4.7. Проверка сжатых стержней на устойчивость
- •4.8. Исследование напряжений при поперечном изгибе
- •4.9. Расчет на прочность при ударных нагрузках
- •4.9.1. Определение коэффициента динамичности
- •4.9.2. Определение ударной вязкости
- •Контрольные вопросы промежуточной аттестации
- •Глоссарий
- •Рекомендуемая литература
- •Для заметок
- •Для заметок
- •Сопротивление материалов
- •Косолапов Владимир Викторович
- •606340, Нижегородская область, г. Княгинино, ул. Октябрьская, 22
2.3. Лекция №3
ПРОСТЫЕ ВИДЫ СОПРОТИВЛЕНИЯ. СДВИГ
Сдвиг элементов конструкций. Определение внутренних усилий, напряжений и деформаций при сдвиге. Понятие о чистом сдвиге. Закон Гука для сдвига. Удельная потенциальная энергия деформации при чистом сдвиге. Расчеты на прочность.
Кроме деформации растяжения или сжатия (см. лекцию № 2) материал, нагруженного элемента конструкции, может испытывать деформацию сдвига.
Сдвиг – вид сопротивления, при котором стержень нагружен двумя равными силами (на малом расстоянии друг от друга), перпендикулярными к оси бруса и направленными в противоположные стороны.
Примером такого действия сил на брус может быть разрезание ножницами прутьев, деформация заклепок, болтов, сварных швов между металлическими листами и т. п. Вообще же, на практике сдвиг в чистом виде получить трудно, так как обычно деформация сдвига сопровождается другими видами деформаций и чаще всего изгибом.
Установим формулы для внутренних усилий, напряжений и деформаций, необходимых при расчете на сдвиг элементов конструкций, имеющих форму бруса. Пусть известна внешняя нагрузка F, вызывающая сдвиг одной части бруса относительно другой. Используя метод мысленных сечений, находим величину внутренних усилий, действующих в сечении бруса. Очевидно, что в данном случае нагружения из шести уравнений равновесия лишь одно не обращается тождественно в ноль. Таким образом, при сдвиге из шести внутренних усилий (N, Qy, Qz, Mx, My, Mz) в сечении элемента конструкции возникают только одно – поперечная сила (Qy или Qz).
Так как поперечная сила Qy (или Qz) является единственным внутренним усилием, возникающим в сечении стержня при сдвиге, и при этом она лежит в плоскости этого сечения, то и напряжения, возникающие здесь, должны лежать в плоскости сечения стержня. То есть, при сдвиге в точках поперечного сечения стержня возникают только касательные напряжения τ. Такой случай напряженного состояния называют чистым сдвигом.
Чистый сдвиг – частный случай плоского напряженного состояния, при котором по граням прямоугольного элемента действуют только касательные напряжения.
Определим величину и направление главных напряжений при чистом сдвиге:
.
(2.3.1.)
Направление главных площадок определяется углом α, который найдем по формуле
.
(2.3.2.)
При чистом сдвиге главные напряжения одинаковы по величине, противоположны по знаку (σ1 = – σ3 = τxy) и направлены под углом 45 о к оси стержня (третья главная площадка элемента совпадает с ненагруженной фасадной гранью элемента, следовательно σ2 = 0).
Закона Гука при сдвиге может быть выражена следующими формулами:
или
(2.3.3.)
где G – коэффициент пропорциональности, который называется модулем упругости при сдвиге, или модулем упругости второго рода и является константой для данного материала; γxy – угол сдвига, или относительный сдвиг.
Модуль сдвига может быть определен аналитически, если известны величины модуля Юнга и коэффициента Пуассона:
(2.3.4.)
