- •Лекция 2. История развития энергопроизводства и энергоиспользования в России и в мире
- •Ископаемый уголь Добыча угля
- •Доказанные запасы угля
- •Уголь в России История добычи угля в России
- •Добыча и запасы угля в России
- •Крупнейшие перспективные месторождения
- •Применение угля
- •Стоимость угля
- •Газификация угля
- •Сжижение угля
- •Уголь в качестве топлива
- •Удельная теплота сгорания угля в сравнении с другими веществами
- •Нефть Исторические сведения о нефти
- •Разработка и применение нефти Добыча нефти
- •Очистка нефти
- •Применение
- •Развитие учения о нефти и нефтепереработке
- •Экономика и промышленность Запасы нефти
- •Цены на нефть и их экономическое значение
- •Нефтяная промышленность в России
- •История отрасли
- •Современная ситуация
- •Экономия и альтернативы конвенциональной нефти
- •Битуминозные (нефтяные) пески
- •Нефть из горючих сланцев
- •Топливо из угля
- •Газовые автомобили
- •Биотопливо
- •Гибридные автомобили Электромобили
- •Природный газ Месторождения природного газа
- •Добыча и транспортировка
- •Транспортировка природного газа
- •Содержание
- •Глава 1. Получение электроэнергии
- •Глава 2. Топливо для производства электроэнергии
- •Глава 3. Устройство ядерных реакторов
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Глава 5. Ядерный топливный цикл
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Введение
- •Глава 1. Получение электроэнергии
- •Немного истории. Почему электрическая?
- •Тепло механическая энергия электрическая энергия
- •Кпд теплового двигателя
- •Глава 2. Топливо для производства электроэнергии
- •Топливные ресурсы
- •Органические невозобновляемые топливные ресурсы
- •Ядерное топливо
- •Прогноз стоимости электроэнергии, вырабатываемой различными способами, в 2005-2010 годах (цент сша/кВт-час)
- •Солнечная энергия
- •Энергия ветра
- •Глава 3. Устройство ядерных реакторов
- •Атомная электростанция (аэс)
- •Виды ядерных реакторов
- •Реакторы на медленных нейтронах
- •Канальные водо-графитовые реакторы
- •Газоохлаждаемые реакторы
- •Реакторы на быстрых нейтронах
- •Реакторы нового поколения
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Радиоактивное излучение в нормальном режиме работы аэс
- •Материалы и конструкции биологической защиты
- •Излучение остановленного реактора
- •Средние индивидуальные годовые дозы облучения населения зоны аэс, мЗв/год
- •Вклад различных источников ионизирующего излучения в годовую дозу, получаемую человеком
- •Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
- •Предотвращение аварий на ядерных реакторах
- •Международная шкала ядерных аварий
- •Общая статистика аварий на электростанциях
- •Серьезные аварии на военных, исследовательских и коммерческих ядерных реакторах с 1977 года
- •Некоторые инциденты, связанные с производством энергии на органическом топливе, начиная с 1977 года
- •Более ранние зафиксированные аварии на ядерных реакторах
- •Статистика инцидентов при производстве электроэнергии
- •Глава 5. Ядерный топливный цикл
- •Добыча руды
- •Отработанное ядерное топливо (оят)
- •Ядерные "отходы"
- •Переработка отработанного ядерного топлива
- •Размещение и хранение отходов
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Использование угля как топлива
- •Теплотворная способность различного топлива и коэффициенты выброса co2
- •Международная ядерная безопасность
- •Заключение
- •Электроэнергия
- •Динамика мирового производства электроэнергии по годам
- •Промышленное производство электроэнергии
- •Распределённая энергетика
- •Добыча полезных ископаемых в России
- •Топливно-энергетические полезные ископаемые
- •Нефть и газ
- •История добычи нефти и газа
- •История добычи угля в России
- •История добычи угля
- •Запасы угля в России
- •Крупнейшие перспективные месторождения
- •Трудовые ресурсы и зарплата
- •Тема 3. Современное состояние энерго- и ресурсопроизводства и использования
Переработка отработанного ядерного топлива
Необходимость переработки исчерпанного ядерного топлива обусловлена:
возможностью регенерирования неиспользованного урана и плутония в отработанных тепловыделяющих элементах;
возможностью уменьшения количества высокоуровневых радиоактивных отходов.
Обычно отработанное топливо содержит до 1% U-235 и несколько меньшее количество плутония, поэтому переработка экономит ресурсы, предотвращая нерациональный расход ценных материалов. Переработка позволяет повторять ядерный цикл в свежих тепловыделяющих элементах, сохраняя, таким образом, приблизительно до 30% естественного урана. Это смешанное оксидное топливо – важный ресурс (смешанное – потому что окись урана смешивается с продуктом переработки отработанного ядерного топлива).
Выделяемые при переработке высокоуровневые отходы, преобразуются в компактные, устойчивые, неразрушимые твердые капсулы, которые удобнее хранить, чем объемистые отработанные тепловыделяющие элементы.
На сегодняшний день более 75 000 тонн отработанного ядерного топлива от гражданских энергетических реакторов уже подвергнуто повторной обработке, а ежегодный объем переработки составляет около 5 000 тонн.
Отработанные топливные сборки, удаленные из реактора, очень радиоактивны и выделяют тепло. Поэтому их помещают в большие резервуары, наполненные водой ("бассейны выдержки"), которая охлаждает их, а трехметровый слой воды поглощает опасное излучение. В таком состоянии они остаются (непосредственно в реакторном отделении или на перерабатывающем заводе) в течение нескольких лет, пока уровень радиоактивности значительно уменьшится. Для большинства видов ядерного топлива его переработка начинается, приблизительно, через пять лет после выгрузки из реактора.
Обычный легко-водный реактор мощностью 1000 МВт производит ежегодно, приблизительно, до 25 тонн исчерпанного топлива. После предварительного охлаждения оно может транспортироваться в специальных защитных контейнерах, которые вмещают лишь несколько (пять – шесть) тонн отработанного топлива, но сами весят до 100 тонн (за счет защиты). Транспортировка отработанного топлива и других высокоуровневых отходов жестко регламентируется специальными правилами, обеспечивающими максимальную безопасность для людей и окружающей среды.
Переработка отработанного оксидного топлива начинается с растворения тепловыделяющих элементов в азотной кислоте. После этого производят химическое разделение урана и плутония. Pu и U могут быть возвращены к началу топливного цикла (уран – на завод для дообогащения, а плутоний – непосредственно на предприятия по изготовлению топлива). Остающаяся жидкость после удаления Pu и U представляет собой высокоуровневые отходы, содержащие примерно 3% исчерпанного топлива. Радиоактивность этих отходов высока, и они продолжают выделять много тепла.
Высокоуровневые отходы после переработки
Высокоуровневые отходы содержат продукты деления и некоторые трансурановые элементы, которые активно испускают альфа-, бета- и гамма-излучение и выделяют много теплоты (теплота выделяется, главным образом, от продуктов деления). Поэтому, несмотря на их малое количество, высокоуровневые отходы представляют значительную опасность и требуют большой осторожности в обращении, размещении и хранении.
Если учесть, что потребляемая мощность электроэнергии, произведенной на атомных электростанциях, в расчете на одного человека составляет, примерно, один киловатт, то на каждого из нас ежегодно приходится примерно по 20 мл высокоуровневых отходов от переработки. После бетонирования, остекловывания или битумирования это количество занимает объем не более одного кубического сантиметра, т.е. в расчете на одного человека ядерная энергетика производит 1 см3 отходов в год. Не очень много, хотя хранить их приходится в особых условиях.
Жидкие отходы, произведенные на перерабатывающих заводах, временно хранятся в охлаждаемых многостенных резервуарах из нержавеющей стали, внутри железобетонных защитных корпусов. Перед окончательным захоронением их преобразуют в компактные, химически инертные твердые частицы. Делается это с помощью бетонирования или остекловывания. Затем эту массу помещают в большие резервуары из нержавеющей стали, вмещающие до 400 кг. Крышка резервуара надежно заваривается. Ежегодные отходы от эксплуатации одного реактора мощностью 1000 МВт содержатся в 5 тоннах такой массы (это приблизительно двенадцать резервуаров высотой 1,3 метра каждый и диаметром 0,4 метра). В Великобритании, например, они хранятся в бункерах глубоко под землей в вертикальном положении.
Обработка таких материалов требует обязательного использования специальных мер, гарантирующих безопасность персонала. Как и во всех производствах, где присутствует гамма-излучение, самый простой и дешевый способ предохранения – это дистанция (к примеру, увеличение расстояния до источника излучения в десять раз уменьшает экспозиционную дозу).
Для транспортировки высокоуровневых отходов (или отработанных топливных сборок) используются специальные прочные контейнеры. Они разработаны таким образом, что выдерживают все возможные аварийные ситуации, сохраняя целостность защиты от радиоактивного излучения. Высокие требования, предъявляемые к конструкциям таких контейнеров, делают практически невозможным их повреждение даже с помощью взрывчатых веществ и поэтому они совершенно непривлекательны для попыток террористического нападения (хлопот много, а толку – нет, поскольку извлечь радиоактивные материалы без специальных сложных технологий невозможно).
Размещение и хранение отработанного топлива
Мы уже говорили, что все высокоактивные отходы, предназначенные для захоронения, должны находиться в устойчивом к разрушению виде: переработанные отходы забетонированы или остеклованы, а предназначенное для хранения необработанное топливо всегда изготавливается в очень устойчивой керамической форме UO2. При непосредственной работе с отработанным ядерным топливом или извлекаемыми из него отходами важно знать степень его опасности. Поэтому в нем всегда следует контролировать уровни тепловыделения и радиоактивности. Например, спустя сорок лет после выгрузки топлива из реактора, в нем остается менее одной тысячной доли начального уровня радиоактивности, и с таким материалом намного легче обращаться.
Эта особенность отличает отходы атомной промышленности от химических отходов, которые всегда остаются опасными. Чем дольше хранятся отходы атомной промышленности, тем менее опасными они становятся, и тем проще подвергать их последующей обработке.
Некоторое время после выгрузки из реактора все отработанное топливо хранится в месте расположения реактора (это является частью топливного цикла). В дальнейшем отработанное топливо перемещают из бассейнов выдержки или сухих хранилищ на государственные склады промежуточного хранения. Здесь отработанное топливо ожидает своего окончательного захоронения.
