- •Лекция 2. История развития энергопроизводства и энергоиспользования в России и в мире
- •Ископаемый уголь Добыча угля
- •Доказанные запасы угля
- •Уголь в России История добычи угля в России
- •Добыча и запасы угля в России
- •Крупнейшие перспективные месторождения
- •Применение угля
- •Стоимость угля
- •Газификация угля
- •Сжижение угля
- •Уголь в качестве топлива
- •Удельная теплота сгорания угля в сравнении с другими веществами
- •Нефть Исторические сведения о нефти
- •Разработка и применение нефти Добыча нефти
- •Очистка нефти
- •Применение
- •Развитие учения о нефти и нефтепереработке
- •Экономика и промышленность Запасы нефти
- •Цены на нефть и их экономическое значение
- •Нефтяная промышленность в России
- •История отрасли
- •Современная ситуация
- •Экономия и альтернативы конвенциональной нефти
- •Битуминозные (нефтяные) пески
- •Нефть из горючих сланцев
- •Топливо из угля
- •Газовые автомобили
- •Биотопливо
- •Гибридные автомобили Электромобили
- •Природный газ Месторождения природного газа
- •Добыча и транспортировка
- •Транспортировка природного газа
- •Содержание
- •Глава 1. Получение электроэнергии
- •Глава 2. Топливо для производства электроэнергии
- •Глава 3. Устройство ядерных реакторов
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Глава 5. Ядерный топливный цикл
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Введение
- •Глава 1. Получение электроэнергии
- •Немного истории. Почему электрическая?
- •Тепло механическая энергия электрическая энергия
- •Кпд теплового двигателя
- •Глава 2. Топливо для производства электроэнергии
- •Топливные ресурсы
- •Органические невозобновляемые топливные ресурсы
- •Ядерное топливо
- •Прогноз стоимости электроэнергии, вырабатываемой различными способами, в 2005-2010 годах (цент сша/кВт-час)
- •Солнечная энергия
- •Энергия ветра
- •Глава 3. Устройство ядерных реакторов
- •Атомная электростанция (аэс)
- •Виды ядерных реакторов
- •Реакторы на медленных нейтронах
- •Канальные водо-графитовые реакторы
- •Газоохлаждаемые реакторы
- •Реакторы на быстрых нейтронах
- •Реакторы нового поколения
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Радиоактивное излучение в нормальном режиме работы аэс
- •Материалы и конструкции биологической защиты
- •Излучение остановленного реактора
- •Средние индивидуальные годовые дозы облучения населения зоны аэс, мЗв/год
- •Вклад различных источников ионизирующего излучения в годовую дозу, получаемую человеком
- •Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
- •Предотвращение аварий на ядерных реакторах
- •Международная шкала ядерных аварий
- •Общая статистика аварий на электростанциях
- •Серьезные аварии на военных, исследовательских и коммерческих ядерных реакторах с 1977 года
- •Некоторые инциденты, связанные с производством энергии на органическом топливе, начиная с 1977 года
- •Более ранние зафиксированные аварии на ядерных реакторах
- •Статистика инцидентов при производстве электроэнергии
- •Глава 5. Ядерный топливный цикл
- •Добыча руды
- •Отработанное ядерное топливо (оят)
- •Ядерные "отходы"
- •Переработка отработанного ядерного топлива
- •Размещение и хранение отходов
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Использование угля как топлива
- •Теплотворная способность различного топлива и коэффициенты выброса co2
- •Международная ядерная безопасность
- •Заключение
- •Электроэнергия
- •Динамика мирового производства электроэнергии по годам
- •Промышленное производство электроэнергии
- •Распределённая энергетика
- •Добыча полезных ископаемых в России
- •Топливно-энергетические полезные ископаемые
- •Нефть и газ
- •История добычи нефти и газа
- •История добычи угля в России
- •История добычи угля
- •Запасы угля в России
- •Крупнейшие перспективные месторождения
- •Трудовые ресурсы и зарплата
- •Тема 3. Современное состояние энерго- и ресурсопроизводства и использования
Отработанное ядерное топливо (оят)
В легко-водном реакторе топливо остается внутри него приблизительно в течение трех лет. Кроме теплоты, выделяемой при реакции расщепления U-235, реактор производит расщепляющийся плутоний (Pu-239), который накапливается в топливных элементах. По истечению примерно трех лет, содержание продуктов деления и других материалов, поглощающих нейтроны, возрастает настолько, что цепная реакция деления замедляется. Отработанные топливные сборки в этом случае удаляют и заменяют новыми. Приблизительно одну третью часть топлива заменяют каждый год. После удаления из реактора, отработанное ядерное топливо (ОЯТ) сохраняет радиоактивность и выделяет тепло. Поэтому в течение некоторого времени такое топливо выдерживают в бассейнах под водой для отвода теплоты и защиты от ионизирующего излучения. Следующим шагом может быть:
окончательное захоронение – завершение открытого топливного цикла как это делается в США, Канаде и Швеции (рис. 27).
переработка отработанного ядерного топлива для дальнейшего использования - закрытый топливный цикл (рис.28). Путь закрытого топливного цикла выбрали Россия, Великобритания, Франция и Япония.
Хранение отработанного ядерного топлива первоначально осуществляется непосредственно в реакторном отделении. Затем оно перемещается в другое место на специальные склады "сухого хранения".
В закрытом топливном цикле для современных легко-водных реакторов топливо проходит точно такой же путь. Начиная с урановых рудников и заводов, уран проходит все стадии преобразования и обогащения для изготовления реакторного топлива.
После удаления топлива из реактора, топливные стержни проходят обработку на перерабатывающих заводах, где они дробятся и растворяются в кислоте. После специальной химической обработки из отработанного топлива выделяют два ценных продукта: плутоний и неиспользованный уран. Примерно 3% топлива при этом остается в качестве высокоактивных отходов. После битумирования, бетонирования или остекловывания эти высокорадиоактивные материалы подлежат длительному захоронению.
Приблизительно 96% урана, который используется в реакторе, остается в отработанном топливе (в том числе примерно 1% U-235). В процессе ядерных превращений часть топлива преобразуется в теплоту и радиоактивные продукты распада, а некоторая часть – в плутоний и другие актиноиды. Следовательно, переработка отработанного ядерного топлива может быть экономически выгодна за счет восстановления неиспользованного урана и плутония, который был произведен в реакторе. Это также уменьшает объем высокорадиоактивных и опасных отходов, которые необходимо надлежащим образом хранить.
В отработанном ядерном топливе содержится примерно 1% плутония. Это очень хорошее ядерное топливо, которое не нуждается ни в каком процессе обогащения. Pu-239 можно смешать с обедненным ураном и получить смешанное оксидное топливо или MOX-топливо, которое поставляется в виде свежих топливных сборок для загрузки в реакторы. Его можно использовать для загрузки в реакторы-размножители.
Восстановленный уран может возвращаться на дополнительное обогащение или поставляться в виде свежего топлива для действующих реакторов. Закрытый топливный цикл, таким образом, является более эффективной системой максимального использования урана без его дополнительной добычи на рудниках (в энергетических единицах экономия составляет около 30%). И хотя промышленность сразу одобрила этот подход, такие схемы переработки отработанного ядерного топлива пока не получили широкого распространения.
Франция, Германия, Великобритания, Россия и Япония продолжают развитие технологий закрытого топливного цикла для окисных топлив, а в Европе более 35 реакторов способны частично использовать МОХ-топливо (от 20 до 50%), содержащего до 7% пригодного для реакторов плутония.
