- •Лекция 2. История развития энергопроизводства и энергоиспользования в России и в мире
- •Ископаемый уголь Добыча угля
- •Доказанные запасы угля
- •Уголь в России История добычи угля в России
- •Добыча и запасы угля в России
- •Крупнейшие перспективные месторождения
- •Применение угля
- •Стоимость угля
- •Газификация угля
- •Сжижение угля
- •Уголь в качестве топлива
- •Удельная теплота сгорания угля в сравнении с другими веществами
- •Нефть Исторические сведения о нефти
- •Разработка и применение нефти Добыча нефти
- •Очистка нефти
- •Применение
- •Развитие учения о нефти и нефтепереработке
- •Экономика и промышленность Запасы нефти
- •Цены на нефть и их экономическое значение
- •Нефтяная промышленность в России
- •История отрасли
- •Современная ситуация
- •Экономия и альтернативы конвенциональной нефти
- •Битуминозные (нефтяные) пески
- •Нефть из горючих сланцев
- •Топливо из угля
- •Газовые автомобили
- •Биотопливо
- •Гибридные автомобили Электромобили
- •Природный газ Месторождения природного газа
- •Добыча и транспортировка
- •Транспортировка природного газа
- •Содержание
- •Глава 1. Получение электроэнергии
- •Глава 2. Топливо для производства электроэнергии
- •Глава 3. Устройство ядерных реакторов
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Глава 5. Ядерный топливный цикл
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Введение
- •Глава 1. Получение электроэнергии
- •Немного истории. Почему электрическая?
- •Тепло механическая энергия электрическая энергия
- •Кпд теплового двигателя
- •Глава 2. Топливо для производства электроэнергии
- •Топливные ресурсы
- •Органические невозобновляемые топливные ресурсы
- •Ядерное топливо
- •Прогноз стоимости электроэнергии, вырабатываемой различными способами, в 2005-2010 годах (цент сша/кВт-час)
- •Солнечная энергия
- •Энергия ветра
- •Глава 3. Устройство ядерных реакторов
- •Атомная электростанция (аэс)
- •Виды ядерных реакторов
- •Реакторы на медленных нейтронах
- •Канальные водо-графитовые реакторы
- •Газоохлаждаемые реакторы
- •Реакторы на быстрых нейтронах
- •Реакторы нового поколения
- •Глава 4. Обеспечение безопасной работы ядерных реакторов
- •Радиоактивное излучение в нормальном режиме работы аэс
- •Материалы и конструкции биологической защиты
- •Излучение остановленного реактора
- •Средние индивидуальные годовые дозы облучения населения зоны аэс, мЗв/год
- •Вклад различных источников ионизирующего излучения в годовую дозу, получаемую человеком
- •Наиболее вероятные эффекты при различных значениях доз облучения и мощностей дозы, отнесенные к целому телу
- •Предотвращение аварий на ядерных реакторах
- •Международная шкала ядерных аварий
- •Общая статистика аварий на электростанциях
- •Серьезные аварии на военных, исследовательских и коммерческих ядерных реакторах с 1977 года
- •Некоторые инциденты, связанные с производством энергии на органическом топливе, начиная с 1977 года
- •Более ранние зафиксированные аварии на ядерных реакторах
- •Статистика инцидентов при производстве электроэнергии
- •Глава 5. Ядерный топливный цикл
- •Добыча руды
- •Отработанное ядерное топливо (оят)
- •Ядерные "отходы"
- •Переработка отработанного ядерного топлива
- •Размещение и хранение отходов
- •Глава 6. Воздействие на среду обитания энергетических установок
- •Использование угля как топлива
- •Теплотворная способность различного топлива и коэффициенты выброса co2
- •Международная ядерная безопасность
- •Заключение
- •Электроэнергия
- •Динамика мирового производства электроэнергии по годам
- •Промышленное производство электроэнергии
- •Распределённая энергетика
- •Добыча полезных ископаемых в России
- •Топливно-энергетические полезные ископаемые
- •Нефть и газ
- •История добычи нефти и газа
- •История добычи угля в России
- •История добычи угля
- •Запасы угля в России
- •Крупнейшие перспективные месторождения
- •Трудовые ресурсы и зарплата
- •Тема 3. Современное состояние энерго- и ресурсопроизводства и использования
Международная шкала ядерных аварий
Степень и описание |
Последствия вне площадки АЭС |
Последствия на площадке АЭС |
Примеры |
7.Тяжелая авария |
Сильный выброс: тяжелые последствия для здоровья населения и для окружающей среды |
Максимальны; тяжелые повреждения активной зоны и физических барьеров |
Чернобыль, СССР, 1986 |
6.Серьезная авария |
Значительный выброс: требуется полномасштабное выполнение плановых мероприятий по восстановлению |
Тяжелые повреждения активной зоны и физических барьеров |
|
5.Авария с рисками для окружающей среды |
Ограниченный выброс: требуется частичное выполнение плановых мероприятий по восстановлению |
Тяжелые повреждения активной зоны и физических барьеров |
Windscale, Великобритания, 1957 (военный реактор); Три-Майл Айленд, США, 1979 |
4.Авария без значительных рисков для окружающей среды |
Минимальный выброс: облучение населения в пределах допустимого предела |
Серьезные повреждения активной зоны и физических барьеров; облучение персонала с летальным исходом |
Saint-Laurent, Франция, 1980; Tokai-mura, Япония, 1999 |
3.Серьезный инцидент |
Пренебрежимо малый выброс: облучение населения ниже допустимого предела |
Серьезное распространение радиоактивности; облучение персонала с серьезными последствиями |
Vandellos, Испания, 1989 (пожар, никакого радиоактивного загрязнения) |
2. Инцидент |
Ноль |
Ноль |
|
1.Аномальная ситуация |
Ноль |
Ноль |
|
0.Событие с отклонением ниже шкалы |
Ноль |
Ноль |
|
История развития атомной энергетики знает несколько аварийных ситуаций, происшедших на ядерных объектах. Кроме единственной - Чернобыльской катастрофы, оцененной в 7 баллов по международной шкале, тревожными оказались пятибалльные аварии в Виндскэйле (Велиобритания) в 1957 году и в Три-Майл Алэнд (США) в 1979 году.
В таких авариях главная опасность для здоровья исходит от продуктов деления, таких как йод-131 и цезий-137. Они биологически активны, и при попадании в организм вместе с пищей задерживаются в нем.
Йод-131 имеет период полураспада 8 дней и опасен в течение первого месяца после аварии. Именно йод-131 вызывает раковые образования щитовидной железы.
Цезий-137 имеет период полураспада 30 лет, и поэтому потенциально опасен в качестве примеси в травах на пастбищах и в зерновых культурах.
Также опасен и сильно радиоактивный изотоп цезия-134, который имеет период полураспада приблизительно два года.
В то время как опасное воздействие йода-131 может быть уменьшено специальными мерами (эвакуацией населения с загрязненных территорий на несколько недель, йодная профилактика), радиоактивный цезий может препятствовать производству продовольствия на загрязненных землях в течение долгого времени.
Другие радиоактивные вещества, присутствующие в активной зоне реактора, образуются не в таких больших количествах и не являются биологически активными (теллур-132, трансурановые элементы).
Промышленный ядерный реактор ни при каких обстоятельствах не может взорваться подобно ядерной бомбе. Тщательный многолетний анализ возможных аварий на АЭС показывает, что строгое соблюдение регламента работы АЭС и выполнение всех технических стандартов полностью гарантирует от аварии. Сегодня приблизительно одну четвертую часть стоимости реакторов составляют затраты на обеспечение систем безопасности, гарантирующих персонал и население от последствий различных нештатных ситуаций.
