- •Оглавление
- •Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы 39
- •Тема 2.3. Практические расчеты на срез и смятие 42
- •Тема 2.4. Геометрические характеристики плоских сечений 51
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения. 153
- •Тема 2.10. Устойчивость сжатых стержней. Расчеты на устойчивость. 157
- •Тема 2.8. Сопротивление усталости 162
- •Раздел II. Сопротивление материалов лекция 18 Тема 2.1. Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Контрольные вопросы и задания
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.1. Основные положения, метод сечений, напряжения Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 2.2. Растяжение и сжатие
- •Л екция 22 Тема 2.2. Механические испытания, механические характеристики. Предельные и допускаемые напряжения
- •Механические испытания.
- •Механические характеристики
- •Виды диаграмм растяжения
- •Предельные и допустимые напряжения
- •Расчеты на прочность при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие № 5. Расчеты на прочность и жесткость при растяжении и сжатии
- •Решение
- •Расчетно-графическая работа №7. Расчёт продольных сил и нормальных напряжений.
- •Тема 2.2. Растяжение и сжатие. Расчеты на прочность и жесткость.
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Лекция 24 Тема 2.3. Практические расчеты на срез и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчет врубок деревянных элементов
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.3. Практические расчеты на срез и смятие
- •Лекция 25 Тема 2.4. Геометрические характеристики плоских сечений
- •С татический момент площади сечения
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Полярный момент инерции сечения
- •Моменты инерции простейших сечений
- •М оменты инерции относительно параллельных осей
- •Главные оси и главные моменты инерции
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Р ешение
- •К онтрольные вопросы и задания
- •Какая из приведенных формул для определения Jx подойдет для сечения, изображенного на рис. 25.8?
- •Практическое занятие №6. Геометрические характеристики плоских сечений
- •Моменты инерции простейших сечений
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №8. Определение геометрических характеристик плоских сечений. Геометрические характеристики плоских сечений.
- •Тема 2.4. Геометрические характеристики плоских сечений
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Расчет цилиндрических винтовых пружин
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.5. Кручение лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 7. Кручение. Расчеты на прочность и жесткость при кручении.
- •Расчетно-графическая работа №9. Определение диаметры вала при кручении.
- •Тема 2.5. Кручение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Контрольные вопросы
- •Л екция 30 Тема 2.6. Изгиб. Построение эпюр поперечных сил и изгибающих моментов. Основные правила построения эпюр
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.6. Изгиб. Определение внутренних силовых факторов
- •Лекция 31 Тема 2.6. Изгиб. Построение эпюр поперечных сил и изгибающих моментов. Приложены сосредоточенные и распределенные нагрузки.
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 33 Тема 2.6. Понятие о касательных напряжениях при изгибе. Линейные и угловые перемещения при изгибе, их определение
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения.
- •Понятия о линейных и угловых перемещениях при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёты на жесткость при изгибе
- •Решение
- •Решение
- •Решение
- •Расчёты на косой изгиб
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 8. Расчеты на прочность при изгибе.
- •Основные положения и расчетные формулы при изгибе
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа№10. Выбор профилей балок.
- •Тема 2.6. Изгиб. Расчеты на прочность
- •Лекция 34 Тема 2.7. Сочетание основных деформаций. Гипотезы прочности.
- •Напряженное состояние в точке
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •Определяем диаметр вала круглого поперечного сечения из условия прочности
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №9. Расчет бруса круглого поперечного сечения при сочетании основных деформаций
- •Основные положения и расчетные формулы
- •Расчетно-графическая работа №11. Расчёт промежуточного вала редуктора.
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности.
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Контрольные вопросы и задания
- •Лекция 37 Тема 2.10. Устойчивость сжатых стержней. Расчеты на устойчивость.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Тема 2.10. Устойчивость сжатых стержней
- •Лекция 38 Тема 2.8. Сопротивление усталости
- •Основные понятия
- •Факторы, влияющие на сопротивление усталости
- •Основы расчета на прочность при переменных напряжениях
- •Контрольные вопросы и задания
- •Ориентировочные значения основных допускаемых напряжений
- •Предельные прогибы некоторых элементов стальных конструкций
Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальными и касательными напряжениями, возникающими на всех площадках (сечениях), проходящих через данную точку. Обычно достаточно определить напряжения на трех взаимно перпендикулярных площадках, проходящих через рассматриваемую точку. Точку принято изображать в виде маленького элемента в форме параллелепипеда (рис. 34.1).
Положения теории напряженного состояния:
1. Напряженное состояние в данной точке полностью определено, если известны напряжения по любым трем взаимно перпендикулярным площадкам.
2. Среди множества площадок, которые можно провести через данную точку, есть три такие взаимно перпендикулярные площадки, на которых отсутствуют касательные напряжения, эти площадки называются главными, а нормальные напряжения, возникающие на них, называются главными напряжениями: σ1; σ2; σ3 (рис. 34.1).
Одно из этих напряжений — максимально, одно — минимально. Максимальное обозначают σ1, минимальное — σ3.
Классификация видов напряженного состояния производится по главным напряжениям:
— если все три главных напряжения не равны нулю, то напряженное состояние называют объемным (трехосным) (рис. 34.1а);
— если одно из главных напряжений равно нулю, напряженное состояние называют плоским (двухосным) (рис. 34.15);
— если два из главных напряжений (σ2 = 0) противоположны по знаку, напряженное состояние называют упрощенным плоским состоянием;
— если лишь одно из главных напряжений не равно нулю, напряженное состояние линейное (рис. 34.1 в).
Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным направлениям и в различных плоскостях, проходящих через точку, определяют деформированное состояние в этой точке.
Сложное деформированное состояние возникает, если деталь одновременно подвергается нескольким простейшим нагружениям.
Такие состояния возникают в заклепочных соединениях (срез и смятие), в болтовых соединениях (растяжение и скручивание), при поперечном изгибе бруса (изгиб и сдвиг).
Часто одним из нагружений (незначительным) пренебрегают. Например, длинные балки рассчитывают только на изгиб.
В ряде случаев нормальные и касательные напряжения, возникающие в детали, имеют одинаковый порядок и ими нельзя пренебрегать. Тогда расчет проводят при сложном деформированном состоянии.
Сложность расчета заключается в отсутствии экспериментальных данных о предельных напряжениях, т.к. провести испытания из-за множества вариантов нагружения практически невозможно.
Для упрощения расчетов в этом случае применяют теории прочности. Смысл теорий заключается в замене реального сложного деформированного состояния равноопасным простым.
Опасное состояние может быть вызвано различными факторами: нормальные напряжения могут достигнуть предела текучести или предела прочности, касательные напряжения могут достигнуть опасного значения или накопленная энергия деформирования может стать слишком большой и вызвать разрушение.
Универсального критерия, позволяющего рассчитать предельное состояние для любого материала, нет. Разработано несколько различных гипотез предельных состояний, при расчетах используют наиболее подходящую гипотезу. Расчеты по гипотезам прочности позволяют избегать дорогостоящих испытаний конструкции.
В настоящее время для расчета валов при совместном действии изгиба и кручения используют только третью и пятую теории прочности.
Сравнение разнотипных состояний производится с помощью эквивалентного (простого) напряженного состояния. Обычно сложное напряженное состояние заменяют простым растяжением (рис. 34.2).
Расчетное напряжение, соответствующее выбранному одноосному растяжению, называют эквивалентным напряжением (рис.34.26).
Полученное расчетным путем эквивалентное напряжение для точки сравнивают с предельным (рис. 34.2е).
Напряженное состояние в точке равноопасно эквивалентному напряженному состоянию. Условие прочности получим, сопоставив эквивалентное напряжение с предельным, полученным экспериментально для выбранного материала:
—допускаемый
запас прочности.
Как известно, предельным напряжением для пластичных материалов является предел текучести σТ, а для хрупкого — предел прочности σВ. Предельное напряженное состояние у пластичных материалов наступает в результате пластических деформаций, а у хрупких — в результате разрушения.
Для пластичных материалов расчет может выполняться по гипотезе максимальных касательных напряжений: два напряженных состояния равноопасны, если максимальные касательные напряжения у них одинаковы (третья теория прочности).
Расчет можно проводить и по теории потенциальной энергии формоизменения: два напряженных состояния равноопасны, если энергия формоизменения у них одинакова (пятая теорема прочности).
Для хрупких и хрупко-пластичных материалов применяют теорию прочности Мора.
Расчет эквивалентного напряжения для точки по теории максимальных касательных напряжений выполняется по формуле
а по теории энергии формоизменения по формуле
где σ — действующее в точке нормальное напряжение; τ — действующее в точке касательное напряжение.
