- •Оглавление
- •Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы 39
- •Тема 2.3. Практические расчеты на срез и смятие 42
- •Тема 2.4. Геометрические характеристики плоских сечений 51
- •Тема 2.10. Устойчивость сжатых стержней. Основные положения. 153
- •Тема 2.10. Устойчивость сжатых стержней. Расчеты на устойчивость. 157
- •Тема 2.8. Сопротивление усталости 162
- •Раздел II. Сопротивление материалов лекция 18 Тема 2.1. Основные положения. Гипотезы и допущения
- •Основные требования к деталям и конструкциям и виды расчетов в сопротивлении материалов
- •Основные гипотезы и допущения
- •Классификация нагрузок и элементов конструкции
- •Контрольные вопросы и задания
- •Лекция 19 Тема 2.1. Основные положения. Нагрузки внешние и внутренние, метод сечений
- •Метод сечений
- •Напряжения
- •Примеры решения задач п оследовательность построения эпюр продольных сил
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.1. Основные положения, метод сечений, напряжения Тема 2.2. Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр
- •Растяжение и сжатие
- •Примеры построения эпюры продольных сил
- •Напряжения при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Формулы для расчета перемещений поперечных сечений бруса при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Тема 2.2. Растяжение и сжатие
- •Л екция 22 Тема 2.2. Механические испытания, механические характеристики. Предельные и допускаемые напряжения
- •Механические испытания.
- •Механические характеристики
- •Виды диаграмм растяжения
- •Предельные и допустимые напряжения
- •Расчеты на прочность при растяжении и сжатии
- •Примеры решения задач
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие № 5. Расчеты на прочность и жесткость при растяжении и сжатии
- •Решение
- •Расчетно-графическая работа №7. Расчёт продольных сил и нормальных напряжений.
- •Тема 2.2. Растяжение и сжатие. Расчеты на прочность и жесткость.
- •Лекция 23 Тема 2.3. Практические расчеты на срез и смятие. Основные предпосылку расчетов и расчетные формулы
- •Сдвиг (срез)
- •Примеры деталей, работающих на сдвиг (срез) и смятие
- •Лекция 24 Тема 2.3. Практические расчеты на срез и смятие
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчет врубок деревянных элементов
- •Решение
- •Расчёт шпонок и клеевых швов
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.3. Практические расчеты на срез и смятие
- •Лекция 25 Тема 2.4. Геометрические характеристики плоских сечений
- •С татический момент площади сечения
- •Центробежный момент инерции
- •Осевые моменты инерции
- •Полярный момент инерции сечения
- •Моменты инерции простейших сечений
- •М оменты инерции относительно параллельных осей
- •Главные оси и главные моменты инерции
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Р ешение
- •К онтрольные вопросы и задания
- •Какая из приведенных формул для определения Jx подойдет для сечения, изображенного на рис. 25.8?
- •Практическое занятие №6. Геометрические характеристики плоских сечений
- •Моменты инерции простейших сечений
- •Рекомендации для решения задач расчетно-графической работы
- •Расчетно-графическая работа №8. Определение геометрических характеристик плоских сечений. Геометрические характеристики плоских сечений.
- •Тема 2.4. Геометрические характеристики плоских сечений
- •Лекция 26 Тема 2.5. Кручение. Внутренние силовые факторы при кручении. Построение эпюр крутящих моментов
- •Деформации при кручении
- •Гипотезы при кручении
- •Внутренние силовые факторы при кручении
- •Эпюры крутящих моментов
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 27 Тема 2.5. Кручение. Напряжения и деформации при кручении
- •Напряжения при кручении
- •Напряжение в любой точке поперечного сечения
- •Максимальные напряжения при кручении
- •Виды расчетов на прочность
- •Расчет на жесткость
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Р ешение
- •Расчет цилиндрических винтовых пружин
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.5. Кручение лекция 28 Тема 2.5. Кручение. Расчеты на прочность и жесткость при кручении
- •Примеры решения задач
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 7. Кручение. Расчеты на прочность и жесткость при кручении.
- •Расчетно-графическая работа №9. Определение диаметры вала при кручении.
- •Тема 2.5. Кручение
- •Лекция 29 Тема 2.6. Изгиб. Классификация видов изгиба. Внутренние силовые факторы при изгибе
- •Основные определения
- •Внутренние силовые факторы при изгибе
- •Принятые в машиностроении знаки поперечных сил и изгибающих моментов
- •Дифференциальные зависимости при прямом поперечном изгибе
- •Контрольные вопросы
- •Л екция 30 Тема 2.6. Изгиб. Построение эпюр поперечных сил и изгибающих моментов. Основные правила построения эпюр
- •Примеры решения задач
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Т ема 2.6. Изгиб. Определение внутренних силовых факторов
- •Лекция 31 Тема 2.6. Изгиб. Построение эпюр поперечных сил и изгибающих моментов. Приложены сосредоточенные и распределенные нагрузки.
- •Примеры решения задач
- •Решение
- •Производная изгибающего момента по длине балки равна поперечной силе
- •Основные правила построения эпюр в случае приложения распределенной нагрузки. Контроль правильности решений.
- •Решение
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Контрольные вопросы и задания
- •Лекция 32 Тема 2.6. Изгиб. Нормальные напряжения при изгибе. Расчеты на прочность.
- •Формула для расчета нормальных напряжений при изгибе
- •Рациональные сечения при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Лекция 33 Тема 2.6. Понятие о касательных напряжениях при изгибе. Линейные и угловые перемещения при изгибе, их определение
- •Поперечный изгиб. Внутренние силовые факторы. Напряжения.
- •Понятия о линейных и угловых перемещениях при изгибе
- •Примеры решения задач
- •Решение
- •Решение
- •Решение
- •Решение
- •Решение
- •Расчёты на жесткость при изгибе
- •Решение
- •Решение
- •Решение
- •Расчёты на косой изгиб
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие 8. Расчеты на прочность при изгибе.
- •Основные положения и расчетные формулы при изгибе
- •Упражнения при подготовке к самостоятельной работе
- •Расчетно-графическая работа№10. Выбор профилей балок.
- •Тема 2.6. Изгиб. Расчеты на прочность
- •Лекция 34 Тема 2.7. Сочетание основных деформаций. Гипотезы прочности.
- •Напряженное состояние в точке
- •Понятие о сложном деформированном состоянии
- •Расчет круглого бруса на изгиб с кручением
- •Примеры решения задач
- •Контрольные вопросы и задания
- •Примеры решения задач
- •Решение
- •Решение
- •Определяем диаметр вала круглого поперечного сечения из условия прочности
- •Решение
- •Решение
- •Решение
- •Решение
- •Контрольные вопросы и задания
- •Практическое занятие №9. Расчет бруса круглого поперечного сечения при сочетании основных деформаций
- •Основные положения и расчетные формулы
- •Расчетно-графическая работа №11. Расчёт промежуточного вала редуктора.
- •Тема 2.7. Сочетание основных деформаций. Гипотезы прочности.
- •Лекция 36 Тема 2.10. Устойчивость сжатых стержней. Основные положения.
- •Понятие об устойчивом и неустойчивом равновесии
- •Расчет на устойчивость
- •Способы определения критической силы
- •Критические напряжения.
- •Контрольные вопросы и задания
- •Лекция 37 Тема 2.10. Устойчивость сжатых стержней. Расчеты на устойчивость.
- •Порядок выполнения расчета на устойчивость
- •Примеры решения задач
- •Р ешение
- •2. Определяем минимальный радиус инерции для круга.
- •Решение
- •Решение
- •Решение
- •Р ешение
- •Решение
- •Тема 2.10. Устойчивость сжатых стержней
- •Лекция 38 Тема 2.8. Сопротивление усталости
- •Основные понятия
- •Факторы, влияющие на сопротивление усталости
- •Основы расчета на прочность при переменных напряжениях
- •Контрольные вопросы и задания
- •Ориентировочные значения основных допускаемых напряжений
- •Предельные прогибы некоторых элементов стальных конструкций
Понятия о линейных и угловых перемещениях при изгибе
Под действием поперечных нагрузок продольная ось искривляется (рис. 33.6). Если материал подчиняется закону Гука, после снятия нагрузок брус выпрямляется, поэтому изогнутую ось бруса называют упругой линией. По форме упругой линии балки можно судить о перемещениях при изгибе.
При прямом поперечном изгибе бруса его ось, искривляясь, остается в силовой плоскости. В результате деформации бруса каждое из его поперечных сечений получает вертикальное и горизонтальное перемещение, а само сечение поворачивается на некоторый угол Θ.
Деформации должны иметь упругий характер, они достаточно малы. В этом случае горизонтальные перемещения сечений ничтожно малы и не учитываются. Рассматривают вертикальные перемещения центра тяжести сечения, называемые прогибами (у). Максимальные прогибы обозначают f = утаx. Для обеспечения нормальной работы устанавливаемого на балках оборудования проводят расчет на жесткость.
Условие жесткости выражается неравенством
где f — максимальный расчетный прогиб балки; [f] — допускаемый прогиб. Иногда проверяется угол поворота сечения Θ < [Θ]. Допускаемый прогиб невелик: от 1/200 до 1/1000 пролета балки; допускаемый угол поворота 1*10-3 рад.
Существует несколько методов определения перемещений сечений при изгибе. Один из них основан на дифференцировании уравнения упругой линии, более рациональный способ — использование интегралов Мора. Метод Мора — универсальный способ определения линейных и угловых перемещений в любых системах.
Для облегчения расчетов на жесткость можно использовать формулы прогибов и углов поворота сечений балок для простейших случаев нагружений. Наиболее распространенные случаи нагружения и расчетные формулы приведены в таблице.
При решении используем принцип независимости действия сил. Заданный случай нагружения делится на составляющие, для которых прогибы рассчитываются по известным табличным формулам, результаты расчетов суммируются.
Ограничение угла поворота вводится для обеспечения нормальной работы подшипников скольжения и роликовых подшипников.
В этом случае проверяется дополнительное условие жесткости:
Т
аблица
33.1. Формулы для определения
прогибов и углов поворота сечений балок
Примеры решения задач
Пример 1. Проверить жесткость двутавровой балки (рис. 33.7). Принять
Сечение
балки — двутавр № 45.
Решение
Используем принцип независимости действия сил. По приведенным в таблице формулам рассчитываем прогиб балки в точке от каждого вида нагружения отдельно (рис. 33.7 (1, 2, 3)).
Поскольку все действующие нагрузки прогибают балку вниз, результаты действия нагрузок можно сложить. Полученный суммарный прогиб сравним с допускаемым прогибом.
Допускаемый прогиб
Суммарный прогиб
q = 4кН/ м = 4Н/мм; l = 5м = 5-103мм.
Для двутавра № 45 ГОСТ 8239-89
Jx = 27696 см4 = 27,7 • 107мм4.
Тогда
21,33 < 25 — условие жесткости выполняется.
Максимальный прогиб не превышает допускаемого значения.
Пример 2. Определить угол поворота и прогиб свободного конца консольной балки, изображенной на рис. 2.61.
