Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Олофинская В.П. 12 Сопр.мат.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
18.87 Mб
Скачать

Рациональные сечения при изгибе

О пределим рациональные сечения при изгибе, для этого срав­ним моменты сопротивления простейших сечений.

Осевой момент инерции прямоугольника (рис. 32.4, вывод формулы в лекции 25) ра­вен

Осевой момент сопротивления прямоуголь­ника

Сравним сопротивление изгибу двух прямоугольных сечений (рис. 32.5).

Вариант на рис. 32.5, б обладает большим сопротивлением изгибу при прочих равных условиях.

Осевой момент инерции круга (рис. 32.6) равен

Осевой момент сопротивления круга

Все необходимые расчетные данные (площади, моменты инер­ции и сопротивления) стандартных сечений приводятся в таблицах стандартов (Приложение 1).

Для материалов, одинаково работающих на растяжение и сжа­тие, выбирают сечения, симметричные относительно оси, вокруг ко­торой совершается изгиб (рис. 32.7).

Пример

Сравним моменты сопротивления двух сечений одинаковой пло­щади: двутавра (рис. 32.7г) и круга (рис. 32.7а).

Двутавр № 10 имеет площадь 12 см2, осевой момент инерции 198см4, момент сопротивления 39,7см3.

Круг той же площади имеет диаметр осевой

момент инерции Jx = 25,12см4, момент сопротивления Wx = 6,2см3.

Сопротивление изгибу у двутавровой балки в шесть раз выше, чем у балки круглого сечения.

Из этого примера можно сделать вывод: сечения прямо­угольные, квадратные, круглые и ромбовидные нерациональны (рис. 32.7а, б).

Для материалов, обладающих разной прочностью при растяже­нии и сжатии (хрупкие материалы обладают значительно большей прочностью на сжатие, чем на растяжение), выбирают асимметрич­ные сечения тавр, рельс и др.

Расчет, на прочность при изгибе

Рассчитать на прочность — это значит определить напряжение и сравнить его с допустимым.

Условие прочности при изгибе:

где [σиJ — допускаемое напряжение.

По этому неравенству проводят проверочные расчеты после окончания конструирования балки.

Для балок из хрупких материалов расчеты ведут по растянутой и сжатой зоне одновременно (рис. 32.8).

При проектировочном расчете определя­ют потребные размеры поперечных сечений балки или подбирают материал.

Схема нагружения и действующие нагрузки известны.

По условию прочности можно определить нагрузочную способ­ность балки и] = Wx [сг].

Примеры решения задач

Пример 1. Подобрать размеры сечения балки в виде двутавра. Известна схема нагружения балки (рис. 32.9), материал — сталь, допускаемое напряжение материала при изгибе

Решение

1. Для защемленной балки реакции в опоре определять не следует.

Проводим расчеты по характерным точкам. Размеры сечения подбираем из расчета по нормаль­ным напряжениям. Эпюру поперечных сил строить необязательно.

Определяем моменты в характерных точках.

МА = 0; МВ = F1• 4; Мв = 20 • 4 = 80 кН • м.

В точке С приложен внешний момент пары, поэтому расчет про­водим для левого сечения (без момента) и для правого — с момен­том т.

Выбираем соответствующий масштаб по максимальному значе­нию изгибающего момента. Опасное сечение — сечение балки, где действует максимальный момент. Подбираем размеры балки в опасном сечении по условию прочности

Основываясь на значении Wx = 500 см3 по таблице ГОСТ 8239-89 выбираем двутавр № 30а: момент сопротивления Wx = 518 см3; площадь сечения А = 49,9 см2.

Для сравнения рассчитаем размеры балки квадратного сечения (рис. 32.10) при том же моменте сопротивления сече­ния.

Сторона квадрата Площадь сечения бал­ки А = b2 = 14,52 = 210,2 см2.

Балка квадратного сечения в 4 раза тяжелее.

Пример 2. Проверить прочность деревянной балки (рис. 2.58), если [σ] = 100 кгс/см2; [т] = 10 кгс/см2.