Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Олофинская В.П. 12 Сопр.мат.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
18.87 Mб
Скачать

Решение

Сечение имеет две оси симмет­рии, которые и являют­ся его главными цент­ральными осями.

Разбиваем сечение на два прямоугольника с b * h = 140 x 8 и два прокатных швеллера. Для швеллера № 16 из таблицы ГОСТ 8240 – 72 имеем JX1 = Jx = 747 см4; Jy1 = 63,3 см9, F1 = 18,1см2, z0 = 1,8см.

Вычислим Jx и Jy:

Пример 6. Определить положение главных цент­ральных осей и вычислить главные центральные моменты инерции заданного сечения (рис. 2.48).

Р ешение

Заданное сечение разбиваем на прокатные профили: швеллер I и два двутавра II. Геометрические характеристики швеллера и двутавра берем из таблиц прокатной стали ГОСТ 8240—72 и ГОСТ 8239 — 72.

Для швеллера № 20 JXl = 113 см4 (в таблице Jy); Jy1 = 1520 см4 (в таблице Jx); F1 = 23,4 см2; г0 = 2,07 см.

Для двутавра №18 Jx2 = 1330 см4 (в таблице Jx); Jy2 = 94,6 см4 (в таблице Jy); F2 = 23,8 см2.

Одной из главных осей является ось симметрии Оу, другая главная ось Ох проходит через центр тяжести сечения перпендикулярно к первой.

Выбираем вспомогательную ось и и определяем ко­ординату v0:

где v1 = 180 + 20,7 = 200,7 мм и v2 = 180/2 = 90 мм. Вычисляем Jx и Jу:

К онтрольные вопросы и задания

    1. Диаметр сплошного вала увеличили в 2 раза. Во сколько раз увеличатся осевые моменты инерции?

  1. Осевые моменты сечения равны соответственно Jx = 2,5 мм4 и Jy = 6,5мм. Определите полярный момент сечения.

  2. Осевой момент инерции кольца относительно оси Ох Jx = 4 см4. Определите величину Jp.

  3. В каком случае Jx наименьшее (рис. 25.7)?

  4. Какая из приведенных формул для определения Jx подойдет для сечения, изображенного на рис. 25.8?

  1. Момент инерции швеллера № 10 относительно главной цен­тральной оси JXQ = 174см4; площадь поперечного сечения 10,9 см2.

Определите осевой момент инерции относительно оси, проходя­щей через основание швеллера (рис. 25.9).

  1. Сравнить полярные моменты инерции двух сечений, имеющих практически одинаковые площади (рис. 25.10).

  2. Сравнить осевые моменты инерции относительно оси Ох пря­моугольника и квадрата, имеющих одинаковые площади (рис. 25.11).

Практическое занятие №6. Геометрические характеристики плоских сечений

Знать формулы моментов инерции простейших сечений, спо­собы вычисления моментов инерции при параллельном переносе осей.

Уметь определять полярные и главные центральные моменты инерции для сечений, имеющих ось симметрии.

Моменты инерции простейших сечений

Прямоугольник и квадрат (рис. П7.1)

Осевые:

Круг и кольцо (рис. П7.2)

где d — диаметр круга и наружный диаметр кольца;

dBH — внутренний диаметр кольца; с = dBH/d

Моменты инерции относительно параллельных осей (рис. П7.3)

где Jx — момент инерции относительно оси xx,

JXo — момент инерции относительно оси х0х0;

А — площадь сечения; а — расстояние между осями.

Рекомендации для решения задач расчетно-графической работы

  1. Момент инерции сложной фигуры является суммой момен­тов инерции частей, на которые ее разбивают. Разбить заданную фигуру на простейшие части, для каждой определить главные цен­тральные моменты инерции по известным формулам.

  2. Моменты инерции вырезов и отверстий можно представить отрицательными величинами.

  3. Заданные сечения симметричны, главные центральные оси совпадают с осями симметрии составного сечения.

  4. Моменты инерции частей, чьи главные центральные оси не совпадают с главными центральными осями сечения в целом, пе­ресчитывают с помощью формулы для моментов инерции относи­тельно параллельных осей. Расстояние между параллельными осями определить по чертежу.

  5. При выполнении задания 2 главные центральные моменты инерции отдельных стандартных профилей определить по таблицам ГОСТ (Приложение 1).

Для использованных в составных сечениях полос моменты инер­ции определить по известной формуле для прямоугольника.