- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
Выводы результатов лабораторных, хорошо контролируемых экспериментов, в которых изучались эффекты сочетания силовой и аэробной тренировки [Шенкман Б.С. и др., 1990;Dudley G.A., R.Djamil, 1985, Hickson S., и др., 1980; Нunter G.и др., 1987] можно суммировать следующим образом:
1. Аэробная тренировка на уровне аэробного порога (АэП), т.е. с умеренной интенсивностью, имеет ограниченную эффективность.
Аэробная тренировка всегда снижает эффект силовой [Dudley G.A., R.Djamil, 1985].
Силовая тренировка не снижает эффекта аэробной [Шенк- ман Б.С., 1990; Dudley G.A., R.Djamil, 1985, Hickson S., и др., 1980].
При использовании одного и того же объема аэробной тренировки через 1-2 месяца начинают проявляться явле- ния «насыщения» (т.е. показатели выходят на плато), од- нако при сочетании силовой и аэробной тренировок ско- рость прироста аэробных показателей возрастает [Dudley G.A., R.Djamil, 1985].
Выводы советских и российских естественных педагогических исследований, а также вся практика спортивной подготовки в ЦВС однозначно свидетельствует, что силовая подготовка является неотъемлемой частью тренировочного процесса на всех дистанциях от спринта до марафона. Дискуссия ведется лишь около средств, методов, объемов и места силовой подготовки в рамках микро-, мезо-, и макроциклов, т.к. при некоторых условиях применение силовых упражнений и соответствующий прирост силы сопровождается снижением аэробных показателей [Журбина А.Д., 1976; Набатникова М.Я., 1975].
Таким образом, считая вопрос о целесообразности силовых упражнений в тренировке бегунов решенным, описанный ниже эксперимент посвящен изучению разработанной в ПНИЛ РГАФК методике силовых упражнений, которые, как предполагается, на основе теоретического анализа и представленных выше данных, должны в большей мере, чем какие бы то ни были другие упражнения, способствовать гипертрофии ММВ.
242
При организации лабораторного эксперимента мы предполагали, что статодинамическая силовая тренировка в сочетании с аэробной тренировкой тех же мышечных групп будет более эффективным путем повышения аэробного (АэП) и анаэробного порогов (АнП) мышц, чем только аэробная тренировка.
В основании этого предположения лежат представления, что индукция синтеза не только митохондриальных белков, которая имеет место при аэробной тренировке, но и сократительных элементов ММВ, суммарно в большей степени увеличит окислительный потенциал мышечных волокон этого типа (т.е. массу митохондрий), чем просто аэробная тренировка ограниченного объема.
Две группы физически активных испытуемых неспортсменов (n: 10 и 7; возраст: 23.1+6 и 25.6±5 лет; масса тела: 69.5±9 и 69.4+12 кг) дважды в неделю тренировались на велоэргометре по 45-50 мин на уровне ЧСС, соответствующему вентиляторному аэробному порогу (АэП), который определялся путем ступенчатого теста. Контроль интенсивности осуществлялся по ЧСС с использованием спорттестера РЕ-3000.
Вторая группа дополнительно дважды в неделю выполняла медленные приседания со штангой (масса 60-70% от ПМС) с неполным вставанием, ограничиваемым специальным устройством. Рабочий угол в коленных суставах изменялся в пределах 90-140°. То есть работа выполнялась без расслабления мышц и «до отказа» в каждом подходе. Следовательно, можно предположить, что тренировка проходила в практически анаэробных условиях и сопровождалась значительным понижением внутримышечного рН.
В первую тренировку испытуемые выполняли 4 подхода с интервалом отдыха 8 мин. Характер отдыха - активный (ходьба в среднем и медленном темпе). Во вторую тренировку применялось 9 подходов в виде суперсерий, т.е. три подхода «до отказа» с коротким 30- секундным интервалом отдыха составляли 1 серию. Таких серий выполнялось три. Интервал активного отдыха между сериями — 12 мин.
Сила мышц — разгибателей ног оценивалась до и после тренировки путем выполнения теста с приседанием штанги до угла в коленных суставах 90° и полным вставанием. Вес штанги подбирался таковым, чтобы испытуемый мог выполнить не более 5-8 приседаний. Максимальная произвольная сила (МПС)
243
мышц — разгибателей ног рассчитывалась по формуле, выведенной на основании экспериментальной зависимости: масса штанги—число повторений, поданным Н.Н. Кулика(1967):
У = 0,122Х2-3,871Х+100; МПС = (масса штанги в тесте) * 100/У,
где У — величина поднимаемого веса в процентах от максимальной силы, X - число подъемов штанги.
Вентиляторные анаэробные пороги (методика Мякинченко Е.Б., 1997) испытуемых определялись до, после и каждые две недели эксперимента (всего 4 среза) в велоэргометрическом тесте со ступенчато-возрастающей нагрузкой. Частота педалирования у мужчин — 80 об/мин, у женщин -70 об/мин. Начальная нагрузка у мужчин - 32 Вт, у женщин - 14 Вт выполнялась в течение двух минут, затем каждую мин мощность нагрузки увеличивалась на 16 Вт у мужчин и на 14 Вт у женщин. Тест выполнялся до явных признаков утомления (одышка, пот, появление лишних движений), но не «до отказа». Фиксировались мощность выполняемой нагрузки, ЧСС при помощи спорттестера РЕ-3000 и легочная вентиляция с использованием портативного вентилометра, соединенного с лицевой маской и имеющего малое «мертвое пространство». Дальнейшая обработка результатов тестирования проводилась с помощью компьютера, где аэробный и анаэробный пороги определялись графическим методом по графикам зависимостей VЕ-ЧСС, VЕ-мощность, ЧСС-мощность. Локализация пороговых точек определялась двумя независимыми экспертами, не имевших информации о принадлежности графиков. Велоэргометрический тест перед началом и в конце эксперимента для повышения надежности проводился трижды. Значения порогов определялось по средней арифметической оценок экспертов. Рассчитывались следующие показатели: мощность аэробного порога (АэП); мощность анаэробного порога (АнП); ЧСС на стандартной немаксимальной мощности (100 Вт); ЧСС АэП; ЧСС АнП.
Общая длительность эксперимента — 6 недель.
Через 6 недель эксперимента зарегистрированы следующие изменения в показателях (рис. 19-22): за период исследования в экспериментальной группе достоверно повысилась сила мышц —разгибателей коленного сустава: с 866+_276 Н в начале (рис. 19) до 1058+320 Н в конце эксперимента (р < 0,001) про-
244
тив недостоверных изменений этого показателя в контрольной группе: с 705+169 Н до 737+200 Н (р > 0,1). Различия между группами в величине приростов достоверны (р < 0,05).
В экспериментальной группе (рис. 20) мощность АэП в начале эксперимента была 125,4+31,1 Вт, через 6 недель стала 155,3+42,9 Вт (р < 0,01, достоверное повышение), мощность АнП соответственно 162,7 + 36,1 Вт и 189,0+45,1 Вт (р < 0,01). За это время в контрольной группе повышение было недостоверным: мощность АэП повысилась с 129,2±33,1 Вт до 135,2±28,9 Вт (р>0,1) и мощность АнП повысилась с 158,8+39,0 Вт до 167,3+34,1 Вт (р>0,1). Различия в величинах приростов этих показателей между экспериментальной и контрольной группами достоверны (р < 0,01).
В обеих группах (рис. 21) достоверно снизилась ЧСС на стандартной немаксимальной нагрузке (100 Вт): в контрольной группе на 15,1±4,7 уд/мин (р < 0,001), в экспериментальной на 14,2+11,9 уд/мин р < 0,05). Различия между группами до начала и после окончания эксперимента недостоверны (р > 0,1).
Однако в то время как в контрольной группе очевидно проявление эффекта «насыщения», в экспериментальной группе ЧСС монотонно снижалась весь период.
Величина ЧСС на аэробном и анаэробном порогах в обеих группах изменились не достоверно, однако обращает на себя внимание разнонаправленность динамики пороговых ЧСС в контрольной и экспериментальной группах. Что подтверждает возможную тенденцию более высокого тренирующего воздействия сочетания силовой и аэробной тренировки на сердечно-сосудистую систему по сравнению с чисто аэробной тренировкой.
Обсуждение результатов
Обнаружен интересный факт существенного повышения эффективности аэробной тренировки, если ее сочетать с силовой (анаэробной) тренировкой тех же мышечных групп, при условии, что два вида нагрузки применяются в различные дни. Полученные результаты можно интерпретировать именно таким образом в связи с тем, что многократно показывалось, что применяемые раздельно чисто силовая тренировка и аэробная тренировка на уровне АэП не приводят к повышению аэробных способностей физически активных лиц.
245
3. Снижение ЧСС на стандартной мощности было одинаковым в двух группах при более благоприятной динамике в экспериментальной группе, что можно интерпретировать как доказательства относительной независимости адаптационных процессов, происходящих в мышцах и ССС при тренировочных воздействиях.
Это полностью согласуется с данными экспериментов, в которых показана разная динамика изменений, происходящих в показателях деятельности ССС и адаптации митохондриаль-ного аппарата мышц.
Однако эксперимент поднимает несколько вопросов, нуждающихся в более углубленном изучении.
1. Действительное ли обнаруженное повышение мощности на уровне вентиляторных порогов отражает повышение окислитель ных способностей мышц, в частности — медленных мышечных волокон, которые, как считается, выполняют основную работу при мощности ниже пороговой? Так как повышение пороговой мощности может отражать простое увеличение силы мышц.
Значительное повышение силы мышц, вероятнее всего, отражает факт повышения физиологического поперечника мышечных волокон, в том числе — медленных, что многократ- но показано в экспериментах (см. главу 6). Действительно ли данные эксперимента означают, что повышение поперечника волокна не является препятствием для улучшения оксидатив- ных свойств волокна?
Если повышение оксидативных свойств мышц произош- ло, то каковы механизмы воздействия силовых упражнений на индукцию синтеза митохондриальных белков?
