- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
6.1.1. Стратегия повышения аэробной производительности мышц в цвс
В литературе обозначены следующие возможные механизмы адаптации с целью увеличения аэробной мощности МВ:
- увеличение размера мышечных волокон (гипертрофия);
- изменение доли красных, белых и промежуточных воло- кон;
- увеличение запасов эндогенных субстратов (триацилглицеролов и гликогена);
- повышение содержания ключевых ферментов, участвующих в расщеплении субстратов, используемых в дыхательном фосфорилировании или, что практически тоже самое, увели- чение плотности митохондрий;
- повышение эффективности процессов окислительного фосфорилирования;
- снижение содержания ферментов анаэробного метаболизма при повышении потенциала аэробных процессов;
- увеличение концентрации миоглобина;
- повышение капилляризации мышц.
Что можно сказать по поводу действительной реализации или не реализации указанных механизмов?
6.1.1.1. Гипертрофия мышечных волокон
Знакомство с литературой по этой проблеме требует прежде всего обратить внимание на следствия, которые вытекают из модели Крога, предложенной в 1918 г, и ее модификаций (модели Тевса, Димера, Грунсвальда) [Колчинская А.З., 1973], в которой участок ткани, снабжаемый одним капилляром, рассматривается как цилиндр, осью которого служит этот капилляр. Если принять допущение, что кислород внутри ткани перемещается исключительно за счет свободной диффузии, то расстояние между капилярами становится критическим для адекватного снабжения всех точек клетки кислородом. Поэто-
149
му считается, например, что ткани, потребляющие в активном состоянии большое количество кислорода, обладают наиболее развитой капиллярной сетью (миокард, красные мышцы и др.). Также многократно показана тесная связь между плотностью капилляров и окислительным потенциалом мышц [Немировская Т.Л., 1992], которые при аэробной тренировке возрастают, как правило, параллельно. Причем увеличение плотности капилляров иногда происходит за счет уменьшения площади поперечного сечения мышечных волокон, что интерпретируется как адаптивная реакция, направленная на улучшение снабжения мышечной ткани кислородом за счет снижения диффузионного расстояния [см. обзор Немировской Т.Л., 1992 ]. Увеличение же размеров мышечных волокон, например, при тренировке культуристов или штангистов, при сохранении числа капилляров в расчете на мышечное волокно, сопровождается снижением плотности капилляров в расчете на единицу объема (табл. 4). Это, как предполагается, является одним из факторов низкого окислительного потенциала мышц спортсменов в этих видах спорта.
Однако существуют хорошо известные факты, которые заставляют усомниться в бесспорности приведенных выше суждений.
1. В модели Крота не принимается во внимание роль миог- лобина как фактора депонирования и ускоренного переноса кислорода внутримышечного волокна. Известно, что оксими- оглобин выполняет две функции — 1) поддержание низкого внутриклеточного напряжения О2, для обеспечения высокого градиента по отношению к капилярной крови и 2) транспорт кислорода внутри МВ, в случае возникновения внутриклеточ- ных градиентов кислорода [Физиология человека / Под ред. Р. Шмидта и Г. Тевса. — Т. 3., 1996]. Поэтому наличие оксимиог- лобина уменьшает градиент парциального напряжение кисло- рода в разных участках мышечных волокон, ликвидируя «ги- поксические» участки.
2. Вокруг гипертрофированных оксидативных мышечных волокон капиллярная сеть настолько густая, что средняя плот- ность капилляров оказывается столь же высокой, как в других местах мышцы [Gayeski T., С.R.Honig, 1986]. Среднее меж- капиллярное расстояние при этом оказывается существенно
150
меньше 80 nм, которое считается критическим для адекватного снабжения ткани кислородом, даже на основании расчетов по модели Крога (т.е. без учета роли миоглобина).
Прямые измерения показали, что напряжение кислорода внутримышечных волокон в состоянии максимальной респи- рации митохондрий не зависит от размера волокон [Gayeski T., С.R.Honig, 1986].
Показано, что в гипертрофированных мышечных волок- нах митохондрии располагаются по периметру волокна [Brzang K.D., K.S.Pieper, 1987;Londraville R.L., Siddel B.D., 1990]. Это уменьшает диффузионное расстояние и не вызывает необхо- димости накопления миоглобина.
Существуют наблюдения [Немировская Т.Л., 1992] о реципрокных отношениях между концентрацией миогло- бина, с одной стороны, плотностью капилляров и окисли- тельным потенциалом МВ - с другой в процессе объемной аэробной тренировки, т.е. можно предположить, что сис- тема внутриклеточного транспорта кислорода обладает ре- зервами производительности, делающими ненужной высо- кую концентрацию миоглобина при высокой капилляриза- ции мышц (т.е. при маленьком диффузионном расстоя- нии). Это полностью согласуется с принципом симморфо- за [Gnaiger T. и др., 1997], в соответствии с которым орга- низм избавляется от избыточных морфологических струк- тур, выходящих за рамки потребностей данной функцио- нальной системы клетки.
Существуют многочисленные наблюдения о высокой сте- пени гипертрофии мышечных волокон у спортсменов экстра класса, тренирующих выносливость (табл. 2).
Аэробная мощность и спортивная результативность в ЦВС растет параллельно с гипертрофией как медленных, так и быс- трых волокон основных мышечных групп спортсменов [Шен- кман Б.С. и др., 1990].
На основе перечисленных фактов, гипотеза об обязательности уменьшения размеров мышечных волокон для достижения ими максимального окислительного потенциала не кажется столь убедительной.
Тем не менее существуют исследования, в которых показано снижение площади поперечного сечения (ППС) мышечных волокон под воздействием аэробной тренировки при одновре-
151
менном росте аэробной производительности организма [Теrrados N. и др., 1986]. Выявлена меньшая ППС мышечных волокон (МВ) у велосипедистов экстра класса, по сравнению с разрядниками [Соуlе Е.F. и др., 1991], а также наблюдения, о меньшей ППС ММВ с ростом спортивной квалификации у лыжников (от 1-го разряда до КМС) и меньшей ППС ММВ у бегунов-любителей с большей работоспособностью, определенной по РWC170 [НемировскаяТ.Л., 1992].
В связи с этим стратегия адаптации мышечных волокон к спортивной тренировке на выносливость требует специального рассмотрения.
Влияние аэробной тренировки на размер МВ многократно
служило предметом исследования.
Всю совокупность данных можно разделить на две группы:
Первая — это исследование влияния аэробной тренировки как таковой на площадь поперечного сечения МВ (ППС). В связи с тем, что под аэробной тренировкой принято подразумевать работу не выше уровня аэробного порога или интервальную тренировку со средним уровнем мощности ниже уровня анаэробного порога, то в большинстве случаев исследовался именно такой вид воздействия.
Вторая группа исследований была направлена на изучение влияния спортивной тренировки в циклических видах спорта с целью достижения высокого спортивного результата.
Суммируя результаты первой группы работ, можно сделать
следующие выводы:
1. В большинстве случаев при «обычной» аэробной тренировке ППС МВ или не изменяется, или незначительно возрастает [Ноlloszy J.O., Booth F.W., 1976; Шенкман Б.С., 1999; обзоры Немировская Т.Л., 1992; Saltin В., 1985]. Увеличение ППС наблюдается тогда, когда гистохимическому исследованию подвергается тренируемая мышечная группа, например — широкая мышца бедра при аэробной тренировке на велоэргометре. В тех же случаях, когда исследуется неосновная группа мышц (например, та же широкая мышца, но при тренировке в беге), то прироста ППС не наблюдается [Шенкман Б.С.и др., 1990].
2. Объемная аэробная тренировка животных или человека приводит к уменьшению ППС мышечных волокон [Теrrados N. и др., 1986]. В тоже время наблюдается выраженный при-
152
рост активности окислительных ферментов и увеличение аэробной производительности организма [обзор Немировская Т.Л., 1992;Теrrados N. и др., 1986].
3. Получено отчетливое явление уменьшения вариации в размере мышечных волокон около некоторого среднего уровня в ответ на выполнение аэробной работы [Немировская Т.Л., 1992]. Это означает - гипертрофированные МВ уменьшаются, а| гипотрофированные - увеличивают площадь своего поперечного сечения.
Анализируя результаты второй группы работ, представленные в табл. 2 и 3, можно сделать следующие выводы:
(1)
Спортсм. н./конечн
Спортсм. в./конечн
Контроль Бодибилдеры
Рис. 10. Величина средней (по данным табл. 2) площади поперечного сечения (мкм2) медленных.мышечных волокон у мужчин: 1)контроля, 2)элитных бодибилдеров, 3) спортсменов, тренирующихся на выносливость в мышцах нижних (бег, коньки, гребля, велоспорт) и 4) верхних (плавание, ,гребля) конечностей
153
На
рис. 10 представлена ППС медленных МВ у
спортсменов различной специализации,
полученных простым усреднением
данных различных исследователей,
перечисленных в табл.
2. Удивительным является то, что ППС
ММВ у
спортсменов,
тренирующих выносливость, не меньше,
чем у бодибилдеров,
чья
тренировка
направлена на гипертрофию МВ как
саркоплазматического,
так и «сократительного» типа.
2. К сожалению, имеющиеся в распоряжении результаты не позволяют сделать однозначного вывода о степени гипертрофии МВ в зависимости от длительности упражнения. Так как наиболее показательными были бы результаты, полученные одной группой исследователей (предполагаются возможные расхождения в методиках получения биопатов, окраске волокон и измерении их ППС), при исследовании спортсменов одинаковой и высокой квалификации и, самое главное, при исследовании мышц, выполняющих основную нагрузку в данной локомоции. Но таких исследований в нашем распоряжении нет.
Анализ же данных табл. 2 и 3 не подтверждает вывод, сделанный Б.С. Шенкманом [Шенкман Б.С., 1990] о том, что при увеличении соревновательной дистанции ППС, в частности ММ В, уменьшается.
С большей долей уверенности можно констатировать, что имеет место практически одинаковая степень гипертрофии ММВ, вне зависимости от длительности соревновательного
упражнения.
При интерпретации данных табл. 2 и 3 мы учитывали данные биомеханических, электромиографических и наших собственных исследований [Мякинченко Е.Б., 1983] по сравнению изометрической силы мышц - разгибателей и сгибателей коленного сустава, в зависимости от квалификации бегунов на средние и длинные дистанции в диапазоне от 2-го спортивного разряда до МСМК — членов сборной команды СССР 1982 — 83гг. (рис. 11).
Из графиков следует, что в то время как сила разгибателей коленного сустава (четырехглавая мышца бедра) возрастает от 2-го разряда до уровня КМС, а затем снижается, то сила мышц — сгибателей коленного сустава (задняя поверхность бедра) оказывается наибольшей у наиболее квалифицированных бегунов. Это отражает закономерность совершенствования тех-
154
2р. 1р. КИС МС МСМК
2р. 1р. КМС МС МСМК
2р. 1р. КМС МС МСМК
Рис. 11. Зависимость силы мышц-сгибателей и разгибателей коленного сустава от спортивной квалификации бегунов на средние дистанции
ники бега с ростом квалификации, когда бегуны от «прыжкового» бега (т.е. использования мышц — разгибателей ног) переходят к экономичному «катящемуся» бегу (при котором большую роль играют сгибатели тазобедренного и коленного суставов) [Nelson R.C., R.J. Gregor, 1976], а также отражает изменение в составе средств подготовки, когда бегуны от использования широкого круга средств ОФП переходят к более узконаправленным, преимущественно беговым средствам [Мякинченко Е.Б., 1983]. Кроме того, из имеющиеся данных биомеханических и миографических исследований [Тюпа В.В., 1978, Физиология мышечной деятельности / Под ред. Я.М.Коца., 1982] следует, что до 70% процентов механической работы на опоре выполняется бегуном за счет работы мышц голени. В связи с этим к «основным» мышечным группам бегунов можно отнести двусуставные мышцы задней поверхности ноги — двуглавую, полусухожильную, полуперепончатую, икроножную, а также камбаловидную мышцы.
Значительная механическая работа [Тюпа В. В., 1978] выполняется также при «сведении бедер» на опоре, когда наиболее активны мышцы сгибатели тазобедренного сустава — подвздошнопоясничная, гребешковая и двусуставная прямая головка четырехглавой мышцы бедра [Физиология мышечной деятельности [Под ред. Я. М. Коца., 1982]. Медиальная и латеральная головки четырехглавой мышцы выполняют уступающую работу практически только против силы тяжести в фазе амортизации и в середине опоры. Однако, как известно, с ростом квалификации у стайеров и особенно длины дистанции
155
вертикальные перемещения ОЦМТ снижаются [Зациорский В.М. и др., 1982]. Это означает, что снижается доля работы, выполняемая разгибателями коленного сустава, в частности широкой мышцей бедра, которая обычно служит объектом гистохимических исследований. Другими словами — делать выводы о влиянии тренировочного процесса на гистохимические и морфометрические показатели мышц бегунов по результатам биопатов, полученных из медиальной или латеральной головки четырехглавой мышцы бедра (что обычно и делается) — грубейшая методологическая ошибка.
Совершенно аналогичная картина наблюдается в лыжных гонках классическим стилем, где особенности скользкой опоры не позволяют выполнить сильного отталкивания «в догонку», которое могло бы осуществляться преимущественно мышцами разгибателями коленного сустава. В связи с этим с ростом спортивного мастерства спортсмены большую работу выполняют за счет мышц туловища, разгибателей локтевого сустава, сгибателей и разгибателей тазобедренного сустава, а не широкой мышцей бедра. Несколько другое положение в «коньковом» ходе. Однако данные работ Т.Л. Немировской, Б.С. Шенкмана, приведенные в табл. 2, 3, собирались в 80-х годах, когда большинство российских лыжников тренировались, используя классический стиль. Кроме того, исследование проводилось в летний подготовительный период, когда лыжниками используется в основном высокообъемная работа в легкоатлетическом беге, приводящая, как следует из приведенных выше данных, к снижению, или, по крайней мере, к стабилизации ППС МВ.
Таким образом, использование мышц передней поверхности бедра для изучения влияния тренировки и состояния спортсменов в легкоатлетическом беге и лыжных гонках на силу, ППС и окислительный потенциал МВ некорректно, так как эта мышца выполняет только небольшую часть работы по перемещению спортсмена относительно дорожки (лыжни).
Поэтому, например, в табл. 2 имеются данные о чрезвычайно высокой степени гипертрофии медленных МВ икроножной мышцы («основная» мышца) у бегунов-марафонцев и стайеров экстракласса - 8,34 мкм2, а также гипертрофии ММВ широкой мышцы бедра («основная» мышца) у велосипедистов 6,36
156
мкм2. Обе эти специализации имеют наибольшее время соревновательной дистанции.
У представителей более коротких дистанций степень гипертрофии ММВ (в мкм2) лежит в тех же пределах:
бегуны на средние дистанции (икроножная мышца) - 6,38;
пловцы (дельтовидная мышца) — 6,90;
— конькобежцы многоборцы (широкая бедра) — 6,70 — 8.97; - академическая гребля (широкая бедра) - 6,68 — 10,03;
— гребцы на байдарке/каное (дельтовидная мышца) - 4,92- 6,85.
В то же время ППС в МВ широкой мышцы бедра у бегунов существенно ниже:
бегуны-любители — 4,69;
стайеры — 5,10;
лыжники — 6,41 — 4,74.
Таким образом, сделанные выше выводы об одинаковой степени гипертрофии ММВ у соревнующихся на разных дистанциях и ее проявлении только в «основных» мышечных группах подтверждаются данными гистохимического исследования.
3. Об избирательном влиянии тренировки (или отбора) на П ПС БМВ и ММВ можно судить по их соотношению.
Длинные дистанции: икроножная мышца — 0,78; широкая бедра-0,97.
Средние дистанции: икроножная мышца — 0,98; широкая бедра -1,14.
Из этих данных следует, что хорошо известное явление снижения поперечника мышц у стайеров [Наккinen К., К.L.Keskinen., 1989] по сравнению со средневиками и спринтерами объясняется снижением степени гипертрофии БМВ с ростом соревновательной дистанции. Это подтверждает многочисленные данные об избирательном влиянии силовой или скоростно-силовой тренировки у спортсменов на БМВ. Еще большая степень снижения всех проявлений мышечной силы у стайеров [Наккinen К., К.L.Keskinen., 1989], по сравнению с поперечником мышц, вероятно, связано как с меньшей гипертрофией БМВ, так и с нервно-мышечными факторами.
4. Чем вызывается гипертрофия МВ у спортсменов, тренирующих выносливость, если аэробная тренировка сама по себе к ней не приводит?
157
Считается [Шенкман Б.С., 1990], что такими факторами могут быть использование анаболических стероидов, специально организованная силовая тренировка, присутствующая во всех без исключения ЦВС, или естественный отбор. Значимость последнего фактора не бесспорна, так как существуют наблюдения, что квалифицированные спортсмены (в частности, культуристы и штангисты [обзор Шенкман Б.С., 1990]) достигают высоких результатов не столько за счет предельной гипертрофии МВ, сколько за счет их большего числа.
5. В связи с данными табл. 2 и 3 возникает вопрос, за счет каких органелл клеток возникает гипертрофия МВ в ЦВС? Логично было бы предположить, что наибольшее значение должно иметь увеличение объемной плотности митохондрий, капилляризация и накопления эндогенных энергетических субстратов (гликогена и триацилглицеролов), т.е. ППС МВ в ЦВС должна была бы увеличиваться по «саркоплазматическому» типу. В частности показано, что в тренированных «на выносливость» мышцах парциальный объем сократительных элементов может уменьшаться до 60%, а в тренированных «на силу» — возрастать до 85% [Хоппелер Г., 1987]. Однако, по имеющимся данным, объем митохондрий может увеличиваться в ММВ с 3-5% у нетренирующихся лиц, до 8-10% у высококвалифицированных спортсменов. Количество гликогена и доля капилляров в мышцах также относительно невелики (2-3%) [Хоппелер Г., 1987]. Гипотеза о возможной гипертрофии МВ за счет увеличения массы воды, связанной с гликогеном, не подтвердилась экспериментально. Таким образом, столь высокая степень гипертрофии ММВ (до 100-120% см. табл. 2) не может объясняться только увеличением объема саркоплазмы. Значительную роль играет «миофибриллярный» тип гипертрофии — т.е. увеличение числа сократительных элементов мышц. Косвенным подтверждением этому выводу может быть то, что парциальный объем миофибрилл в ММВ и БгМВ одной и той же мышцы существенно не различается (76 - 82%) [Хоппелер Г., 1987]. Тот факт, что гипертрофия за счет сократительных элементов в этом случае не сопровождается адекватным приростом силы и скоростно-силовых способностей у спортсменов, тренирующих выносливость, объясняется, вероятнее всего, нервно-мышечными факторами и владением техникой скоро-
158
стно-силовых и силовых движений. Вероятно, эти способности не являются существенными в ЦВС.
6. Каков биологический смысл адаптации к спортивной тренировке в ЦВС через увеличение ППС, в частности, за счет накопления сократительных элементов мышц? Можно было бы предположить, что степень гипертрофии волокон основных мышц должна коррелировать с величиной механической нагрузки, которую приходится преодолевать мышцам при выполнении аэробных упражнений. Вероятно, некоторые основания у этой гипотезы есть, так, например, наибольшие величины ППС зафиксированы в икроножной мышце бегунов, которая испытывает очень высокие значения механической нагрузки в беге. Однако этой гипотезе противоречат данные, представленные в табл. 2, например, в плавании, где пиковая механическая сила тяги мышц в цикле движения существенно меньше, чем у представителей «наземных» локомоций, степень гипертрофии ММВ даже несколько выше. Этот факт может означать, что гипертрофия волокон необходима не только для противодействия механической нагрузке, но и как фактор повышения аэробной (в случае ММВ) мощности мышц.
Таким образом, можно резюмировать, что для каждого вида локомоций существует оптимум ППС в каком-то определенном сочетании с морфоструктурами, отвечающими за окислительный потенциал ОП мышечных волокон данной мышечной группы. Величина ППС и соответствующий ОП МВ детерминирован величиной механических нагрузок, которые мышцы испытывают в соревновательном упражнении.
При этом избыточная гипертрофия увеличивает инертную мышечную массу, а ее недостаток снижает анаэробные пороги (за счет более раннего подключения БгМВ к работе см. гл. 5), т.е. приводит к более раннему «закислению» на дистанции.
Как тогда добиться оптимума? Этот вопрос решается в каждом конкретном случае. Надо только помнить, что при больших объемах - снижается ППС. При избытке силовой работы страдают аэробные способности. Следовательно, должно быть оптимальное сочетание объемных средств (снижающих ППС) и силовой работы, поддерживающих ППС. В соревновательном же периоде оптимальной будет - соревновательная интенсивность (в биомеханическом смысле).
159
