- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
5.2.2. Быстрые мышечные волокна
Первая стадия. Быстрые оксидативные мышечные волокна на средних дистанциях повторяют схему работы ММВ. Боль- шая часть быстрых гликолитических МВ (за исключением са-
132
мых низкопороговых, вовлеченных в работу с самого начала) в начале дистанции (после стартового разгона) или работают в режиме зубчатого тетануса, или длительность их активности в цикле движений очень мала и наблюдается только в момент пиковых усилий, величина которых определяется биомеханическими особенностями упражнения. Поэтому в первой стадии вклад таких БМВ в производимую механическую работу невелик, но возрастает под влиянием ЦНС в процессе снижения производительности уже вовлеченных МВ.
Вторая стадия. Наблюдается максимальный вклад мышечного волокна в работу. Эта стадия возможна при сочетании высокой активности а-мотонейронов с частотой гладкого тетануса и наличия в волокне высокой концентрации КрФ.
Третья стадия. Постепенное снижение вклада волокна в связи с переходом на анаэробный гликолиз.
Четвертая стадия. Быстрое снижение производительности волокна в связи с высокой степенью закисления и исчерпания КрФ. Эта фаза, гипотетически, может быть прервана мотонейронным пулом, выключившим данную ДЕ из работы в связи с утомлением.
В целом же схема вклада БМВ в генерацию усилий мышцы представлена на рис. 8.
5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
Подробно описанная выше схема представлена на рис. 8.
Стартовый разгон обеспечивается работой всех типов мышечных волокон. Затем участие БгМВ в создании механической тяги мышцы сводится к минимуму. И примерно две трети дистанции преодолевается за счет ММВ и БоМВ. Однако все ускорения по ходу дистанции обеспечиваются дополнительным рекрутированием БгМВ. По мере накопления Н+ в работающих МВ их вклад снижается, что вынуждает ЦНС постепенно подключать БгМВ, причем со всевозрастающей скоростью, увеличивающей долю КФК-реакции и анаэробного гликолиза в ресинтезе АТФ, т.к. как эффективность работы митохондриального аппарата падает. Если степень утомления на финише не предельная, то спортсмен способен к финишному ускорению, которое будет обеспечиваться при преимущественном участии БгМВ.
133
Компенс.
утомление
I
-Финиш
5.2.4. Схема энергообеспечения работы мышцы
Последовательность развертывания и протекания основных реакций энергообеспечения представлена на рис. 9.
КФК-реакция на миофиламентах достигает околомаксимальной скорости ресинтеза АТФ в стартовом разгоне, понижая в мышце концентрацию КрФ. Затем интенсивность этой реакции существенно снижается, незначительно превышая скорость аэробного ресинтеза АТФ, т.к. как субстратом в ней является КрФ, ресинтезируемый митохондриальной КФК (на
Окисл.фосф (серый фон); Гликолиз (белый фон); КфК-реакция (черный фон)
Рис. 9. Схема вклада основных реакций энергообеспечения мышц конечностей в ресинтез АТФ при преодолении средней дистанции
-Финиш
134
схеме показана только разница между расходом АТФ и ресинтезом АТФ, получаемой из КрФ). Снижение концентрации КрФ в дополнительно рекрутируемых МВ приводит к постепенному снижению пула фосфагенов в мышце. На финише дистанции скорость КФК-реакции на миофиламентах вновь существенно повышается, приводя к значительному исчерпанию запасов фосфагенов.
Суммарная (по мышце в целом) скорость анаэробного гликолиза возрастает по мере расхода запасов КрФ в БоМВ, достигая околомаксимальных значений (т.е. когда одновременно в большом числе МВ максимально активизированы ключевые ферменты гликолиза) приблизительно к 25-35-й с. Затем большую часть дистанции интенсивность гликолиза практически не меняется, прибавляя свою долю (около 35% в нашем примере) к АТФ, ресинтезируемой на митохондриях и КФК-реакции. К концу дистанции в зависимости от степени утомления и интенсивности «спурта» вклад гликолиза может несколько повышаться. В то же время скорость накопления Ла в мышцах и крови, достигнув максимума в период 30-40-й с работы, будет снижаться в связи с активизацией факторов удаления Ла, главные из которых: раскрытие всех капилляров и достижение максимума МОК к 1,5-2 мин работы, что ускоряет «вымывание» Ла в кровяное русло, а также максимальная активизация деятельности миокарда, дыхательных мышц и ММВ неосновных мышц тела, потребляющих Ла из крови. Однако в БгМВ при достижении концентрацией лактата высоких значений (более 15 ммоль/л) скорость выхода Ла в кровь уменьшается.
Скорость ресинтеза АТФ в ходе окислительного (дыхательного) фосфорилирования также увеличивается по мере снижения концентрации КрФ в ММВ, практически достигая максимума к 30-35-й с. Далее идет период максимальной производительности с постепенным снижением вклада этого источника по мере снижения рН в ММВ и БоМВ.
