- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
3.5. Метод Соnсоni
Сопсоni с соав. предложил в 1982 г. непрямой и неинвазивный метод определения анаэробного порога посредством измерения ЧСС в ступенчатом тесте на стадионе. Было обнаружено, что у квалифицированных бегунов кривая связи «ЧСС- скорость бега» имеет сигмовидную форму. Второй перелом на этой кривой совпадал с моментом появления анаэробного порога, т.е. при закислении крови до 4 мМ/л лактата.
В работе Р. Ноfmann et. а1. было обследовано 227 спортсменов мужчин различных видов спорта (возраст — 23 , 6+-4 г, рост — 180,6+-6 см, масса-74,6+-8 кг). Все испытуемые выполнили ступенчатый тест с амплитудой ступеньки 20 Вт, длительностью по 60 с.
В результате оказалось, что все испытуемые были разделены на три группы. В первой группе (85,9% испытуемых) скорость прироста ЧСС после АнП уменьшалась, во второй группе (6,2%) скорость увеличения ЧСС не изменялась, в третьей группе(7,9%) скорость изменения ЧСС становилась больше. По ЧСС, мощности, концентрации лактата
68
достоверных различий между группами не было обнаружено. Однако анализ представленных в статье данных показал, что АнП, фиксируемый по 4 мМ/л лактата, наблюдался в первой группе на уровне 80% от МПК (отказа от работы), а во второй и третьей группе на уровне 74% МПК. Следовательно, если после наступления АнП в мышцах не остается мышечных волокон для рекрутирования, то мышцы и кровь мало закисляются, нет стимула для ускорения ЧСС. В том случае, когда в мышце остается еще много нерекрутированных гликолитических МВ, то закисление растет, появляется эксцесс СО2, имеется стимул для роста ЧСС.
Таким образом, эффект Соnconi не является обязательным, и изменение ЧСС связано с наличием рекрутирования гликолитических мышечных волокон, чем больше их рекрутируется, тем больше закисление мышц и крови, тем больше нарастает скорость изменения ЧСС.
3.6. Понятие - локальная мышечная работоспособность
Анализ кривых индивидуальных или мировых рекордов показывает, что во всех соревновательных упражнениях, выполняемых до 1 мин 30 с, т.е. до достижения максимальной частоты сердечных сокращений, спортивные достижения определяются работоспособностью активных мышц. Центральное звено - производительность ССС не имеет принципиального значения. При выполнении соревновательных упражнений большей длительности центральное звено может иметь значение только в случае, когда порог анаэробного порога начинает приближаться к МПК потенциальному. На уровне высшего спортивного мастерства такая ситуация встречается часто. В этом случае спортсмену надо обеспечить делятацию левого желудочка сердца и после этого лимитирующим звеном будет уже не «центральный», а «периферический» фактор.
Таким образом, локальная мышечная работоспособность (локальная выносливость) — это способность человека выполнять предельную мышечную работу при адекватном (избыточном) снабжении ее кислородом или когда величина потребления кислорода не имеет существенного значения для обеспечения заданной двигательной активности.
Практически во всех случаях лимитирующим звеном в повышении спортивных достижений является локальная мышеч-
69
ная работоспособность, однако, проблема ее развития остается вне внимания исследователей. Больше рассуждают об общей работоспособности, общей алактатной, гликолитической и аэробной мощности. Причем все рассуждения строятся в лучшем случае на основе простейшей модели организма человека, которая включает в себя пул молекул АТФ и три-четыре механизма для их ресинтеза: креатинфосфатный, анаэробный гликолитический (лактатный), аэробный гликолитический и окисления жиров. В такой модели нет конкретных мышц, нет мышечных волокон, «опущена» физиология с ее законами.
70
