- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
3.2. Критический анализ интерпретации данных лабораторного тестирования
Тест 1. Проводится педалирование на велоэргометре с цепью достижения максимальной работы за 30 с. Далее, в качестве основы для интерпретации, взяты классические представления из учебников по физиологии. Там пишется, что работа предельной интенсивности в 30 с обеспечивается на 90% анаэробными источниками энергообеспечения и прежде всего анаэробным гликолизом. Мощность 30 с предельной работы составляет около 60-80% МАМ. Проверим эти представления на основе современной модели, имитирующей срочные адаптационные процессы. Предположим, что мощность составила 500 Вт, это с учетом к.п.д. работы на велоэргометре 23% будет соответствовать 6,8 л/мин, а за 30 с — 3,4 л кислорода. Известно (Волков Н.И., 1969, 1990), что на долю алактатного долга приходится около 2,5 л, тогда 0,9 л долга должно распределиться между аэробным гликолизом и анаэробным гликолизом. Если в мышцах 50% окислительных мышечных волокон и 50% гликолитических, то аэробные процессы должны обеспечить 11,45 л кислородного запроса и 0,45 л на анаэробный гликолиз. Следовательно, доля анаэробного гликолиза составит не более чем 13%, а этот тест характеризует мощность анаэробного алактатного механизма энергообеспечения, а также аэробного, поскольку чем меньше закисляются мышцы, тем легче поддерживают мощность и силу сокращения. Известно, что ионы водорода могут присоединяться к активным центрам актина, в этом случае они мешают работе ионов кальция и поперечные мостики между актином и миозином не образуются, сила тяги начинает падать. Следовательно, чем меньше образуется ионов водорода, тем легче поддерживать силу сокращения мышц. Такая ситуация складывается в случае, когда в ходе тренировочного процесса происходит трансформация гликолитических мышечных волокон в окислительные за счет увеличения массы митохондрий.
Таким образом, когда в публикациях встречается мнение, что 30 с предельная работа характеризует гликолитическую анаэробную мощность, следует читать — алактатная и аэробная гликолитическая мощность активных в упражнении мышц, в данном случае — ног.
59
Тест 2. В тесте с выполнением трех одноминутных велоэргометрических предельных упражнений с одноминутными интервалами отдыха суммарную работу решили обозвать показателем анаэробной гликолитической емкости. Очевидно, что рост этого показателя может происходить только в случае увеличения алактатной мощности (МАМ) и аэробных возможностей мышц (потребление кислорода на уровне АнП), поскольку рост мощности анаэробного гликолитического источника энергообеспечения приводит к увеличению закисления мышц, а значит к ускорению наступления утомления.
Таким образом, когда пишут о гликолитической анаэробной емкости надо понимать, что речь идет об алактатной и аэробной мощности энергообеспечения активных в упражнении мышц, в данном случае — ног.
Тест 3. В случае определения закисления крови после трех одноминутных велоэргометрических тестов можно определить показатель как частное отделения суммарной работы за 3 мин на изменение закисления крови (DрН). Этот показатель обозвали анаэробной гликолитической эффективностью, однако, смысл пересчета противоположный. Поскольку увеличение степени закисления приводит к снижению показателя, и наоборот, увеличение аэробных возможностей — не только к увеличению работоспособности (числителя) и к меньшей степени закисления (DрН).
Таким образом, все три теста характеризуют одно и то же, а именно уровень развития МАМ и аэробной мощности мышц ног, другими словами, характеризуют локальную мышечную работоспособность (выносливость).
Тест 4. С помощью ступенчатого теста и газоанализатора можно определить величину максимального потребления кислорода или, по данным РWС170+30%, определить мощность, близкую к мощности МПК. Этот показатель было принято определять как аэробная мощность. Очевидно, что это также ошибка интерпретации, поскольку величина потребления кислорода на мощности МПК складывается из нескольких составляющих, а именно: из потребления кислорода активными в данном упражнении скелетными мышцами, миокардом и дыхательными мышцами, остальные ткани и органы потребляют кислорода пренебрежимо мало. В связи с этим информативность показателя МПК исключительно низкая и не может на относительно
60
однородной выборке характеризовать аэробную подготовленность спортсменов. Уже более 15 лет как стало известно, что наиболее информативным показателем аэробных возможностей спортсменов является величина потребления кислорода, или скорости, или мощности на уровне анаэробного порога.
Тест 5. Аэробная емкость определяется как продолжительность выполнения упражнения критической мощности или МПК, Очевидно, что это упражнение будет выполнять дольше тот спортсмен, у которого потребление кислорода на уровне АнП будет ближе к МПК. Например, стайеры имеют мощность АнП на уровне 70-90% от мощности МПК. Следовательно, этот показатель характеризует относительную величину мощности АнП.
Тест 6. В ступенчатом тесте можно определить зависимость между потреблением кислорода и выполняемой мощностью. Этот показатель называют аэробной эффективностью, однако, никакую эффективность этот показатель не может продемонстрировать, поскольку это отношение есть КПД работы на велоэргометре. КПД работы на велоэргометре составляет 22-24% и не зависит ни от спортивной специализации, ни от спортивной квалификации. Поэтому показатель аэробной эффективности у некоторых «специалистов» меняется только от массы спортсмена, поскольку КПД делится на вес спортсмена.
Таким образом, все тесты, которые нашли применение в научных исследованиях и практике получили некорректную интерпретацию. Главный результат нашей интерпретации один все тесты характеризуют или МАМ, или окислительное фосфорилирование мышц ног (потребление кислорода на уровне АнП), или в каком-то соотношении оба этих механизма энергообеспечения, другими словами, локальную работоспособность мышц ног (локальную выносливость).
