- •Глава 1. Методологические основы исследования локальной мышечной выносливости 18
- •Глава 2. Основы биологии человека (концептуальные
- •Глава 3. Контроль локальной выносливости 55
- •Глава 4. Локальная выносливость как компонент физической подготовленности спортсменов в циклических видах спорта 71
- •Глава 5. Факторы, лимитирующие локальную выносливость
- •Глава 6. Теоретические аспекты выбора средств, методов и организации тренировочного процесса в циклических видах спорта с целью улучшения локальной мышечной выносливости……………………………….. 147
- •Глава 7. Анализ данных экспериментальных исследований
- •Глава 8. Практические аспекты развития
- •Глава 1
- •1.1. Эмпирический уровень научного исследования
- •1.2. Теоретический уровень научного исследования
- •1.3. Методология теории и методики физического воспитания
- •1 .4. Методология спортивно-педагогической адаптологии
- •1,5. Некоторые проблемы, связанные с различием в логике эмпирического и теоретического мышления
- •Уважаемые критики и наши последователи!
- •Ключевом положении!
- •Глава 2
- •2.1. Биология клетки
- •2.2. Нервно-мышечный аппарат
- •2.3. Биохимия клетки (энергетика)
- •2.4. Модель функционирования нервно-мышечного аппарата при выполнении циклического упражнения
- •2.5. Биомеханика мышечного сокращения
- •2.6. Сердце и кровообращение
- •2.7. Кровеносные сосуды
- •2.8. Эндокринная система
- •2.9. Иммунная система
- •2.10. Пищеварение
- •2.11. Жировая ткань
- •Глава 3
- •3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
- •3.2. Критический анализ интерпретации данных лабораторного тестирования
- •3.3. Новые подходы для оценки физической подготовленности спортсменов
- •3.4. Определение степени влияния центрального или периферического лимитирующего фактора
- •3.5. Метод Соnсоni
- •3.6. Понятие - локальная мышечная работоспособность
- •Глава 4
- •4.1. Средства и методы развития силовых способностей в циклических видах спорта
- •4.2. Соотношение объемов средств развития локальной выносливости в цвс
- •4.3. Распределения средств развития локальной выносливости в рамках одного занятия, микро-, мезо- и макроциклов и многолетней подготовки
- •4.3.1. Построение тренировочного занятия
- •4.3.2. Построение микроцикла
- •4.3.3. Построение мезоцикла
- •4.3.4. Построение макроциклов
- •4.4. Реализация компонентов локальной выносливости в основном соревновательном упражнении
- •Глава 5
- •5.1. Схема физиологических и биохимических процессов, происходящих в мышцах при преодолении соревновательной дистанции
- •5.1.1. Врабатывание
- •5.1.2. Фаза квазиустойчивого состояния
- •5.1.3. Финишное ускорение (фаза максимального волевого напряжения)
- •5.2. Схема работы разных типов мв при преодолении соревновательной дистанции
- •5.2.1. Медленные мышечные волокна
- •5.2.2. Быстрые мышечные волокна
- •5.2.3. Парциальный вклад различных типов мв в механическую работу при преодолении дистанции
- •5.2.4. Схема энергообеспечения работы мышцы
- •5.3. Особенности физиологических и биоэнергетических процессов в мышечном аппарате при более длинных и более коротких дистанциях
- •5.3.1. Работа максимальной мощности
- •5.3.2. Работа субмаксимальной мощности
- •5.3.3. Упражнения умеренной мощности
- •5.4. Заключение
- •Глава 6
- •6.1. Обоснование выбора средств и методов тренировки мышечных компонентов, определяющих выносливость в циклических видах спорта
- •6.1.1. Стратегия повышения аэробной производительности мышц в цвс
- •6.1.1.1. Гипертрофия мышечных волокон
- •6.1.1.2. Изменение доли красных, белых и промежуточных волокон
- •6.1.1.3. Повышение содержания ключевых ферментов, участвующих в окислительном расщеплении субстратов
- •6.1.1.4. Увеличение плотности митохондрий
- •6.1.1.5. Повышение эффективности процессов окислительного фосфорилирования
- •6.1.1.6. Снижение активности ферментов анаэробного метаболизма в соответствии с повышением потенциала аэробных процессов
- •6.1.1.7. Увеличение концентрации миоглобина
- •6.1.1.8. Повышение капилляризации мышц
- •6.1.1.9. Заключение по разделу
- •6.1.2. Стратегия повышения анаэробной производительности мышц в цвс
- •6. Т .2.1. Гипертрофия мышечных волокон
- •6.1.2.2. Повышение запасов эндогенных субстратов (креатинфосфата и гликогена)
- •6.1.2.3. Повышение содержания ключевых ферментов, участвующих в анаэробном метаболизме и его регуляции
- •6.1.2.4. Увеличение буферной емкости мышц
- •6.1.2.5. Заключение по разделу
- •6.2. Тренировочные средства и методы развития локальной выносливости
- •6.2.1. Средства и методы тренировочного воздействия на ммв
- •6.2.1.1. Средства и методы, направленные на гипертрофию (увеличение силы) ммв
- •6.2.1.2. Средства и методы, направленные
- •6.2.2. Средства и методы тренировочного воздействия на бмв
- •6.2.2.1. Средства и методы, направленные на гипертрофию бмв
- •6.2.2.2. Средства и методы, направленные
- •6.2.2.3. Средства и методы, направленные на повышение буферной емкости мышц и массы ферментов анаэробного гликолиза
- •6.3. Теоретические основы планирования одного тренировочного занятия, тренировочных микро-, мезо- и макроциклов
- •6.3.1. Теоретические основания для планирования одного тренировочного занятия
- •6.3.2. Теоретические основания для планирования микроциклов
- •6.3.3. Теоретические основания для планирования мезоциклов
- •1 Тестир.
- •6.3.4. Планирование макроциклов
- •6.4. Проблема взаимосвязи уровня и особенностей подготовленности нервно-мышечного аппарата с техникой и экономичностью локомоции
- •6.5. Заключение по разделу
- •Глава 7
- •7.1. Исследование упражнений статодинамического характера как средства воздействия на медленные мышечные волокна
- •7.2. Влияние сочетания статодинамической силовой и аэробной тренировок мышц бедра на аэробный и анаэробные пороги человека (лабораторный эксперимент)
- •7.3.Классификация упражнений бегунов на средние и длинные дистанции по признаку их преимущественного воздействия на морфоструктуры организма
- •7.4. Критерии обоснованности выводов
- •7.5. Исследование влияния акцентированной силовой и аэробной тренировки на показатели силы, аэробных способностей и экономичности техники бега
- •7.6. Исследование влияния статодинамических упражнений совместно с традиционными методами подготовки бегунов на показатели силы и аэробных способностей
- •7.7. Исследование эффективности последовательного применения силовых и аэробных средств подготовки на показатели физических способностей бегунов
- •7.8. Заключение по главе
- •Глава 8
- •8.1. Возможные варианты коррекции системы подготовки бегунов на выносливость
- •1. Переходный период (условно — сентябрь).
- •4. Предсоревновательный период (конец декабря, январь).
- •8.2. Некоторые аспекты построения многолетней подготовки бегунов
- •8.2.1. Принципы подготовки юных бегунов
- •8.3. Заключение
2.11. Жировая ткань
Жировая ткань является самостоятельным в отношении ги-стоэмбриогенеза образованием. Она выполняет три основные
функции:
синтез триглицеридов из сывороточных липидов и глю козы;
сохранение их в жировых депо;
освобождение их из жировых депо (липолиз).
Жировая клетка — адипоцит — может увеличиваться в размере по мере накопления липидов, протоплазма клетки отжимается на периферию вместе с ядром, которое постепенно начинает уплощаться. Механическая деформация ядра адипоцита, видимо, мешает ходу обмена веществ, поэтому переполненные жировые клетки плохо метаболизируют глюкозу. В межклеточном пространстве располагаются кровеносные капилляры, подходящие к каждой жировой клетке. Здесь же проходят ретикулярные волокна, выполняющие опорную механическую роль. Нервные волокна, иннервирующие жировые клетки, в основном принадлежат симпатической нервной системе. Нервные стволы поступают в жировую ткань вместе с сосудами, далее они постепенно разволокняются, и нервные волокна охватывают каждую жировую клетку (А.Н. Климов, Н.Г. Никульчева, 1999).
В жировой ткани происходят как процессы превращения углеводов в жиры, так и переход жиров в углеводы.
Биосинтез жирных кислот происходит в основном в цитоплазме адипоцитов. Сырьем для биосинтеза является ацетилко-энзим-А, который образуется из избыточной глюкозы или аминокислот.
Липолиз усиливается под действием катехоламинов и глю-кагона, которые захватываются клетками активизированной жировой ткани. При стрессорных ситуациях увеличивается скорость высвобождения жирных кислот и глицерина из жировой ткани.
Жировая ткань может разрастаться как в результате гипертрофии, так и гиперплазии адипоцитов.
54
Глава 3
Контроль локальной
выносливости
Физическая подготовка спортсмена направлена на изменение строения клеточных структур в тканях различных органов под влиянием тренировочного процесса. Физическая подготовленность, в частности локальная мышечная выносливость, требует регулярного контроля для планирования и коррекции тренировочных нагрузок.
3.1. Мощность, эффективность и емкость механизмов энергообеспечения как критерии оценки подготовленности спортсменов
Энергетический обмен в организме человека связан с процессами анаболизма, катаболизма и функциональным метаболизмом. Количественно энергетический обмен измеряют в единицах работы (ккал) и мощности (ккал/час). Используются также кгм и кгм/мин. Однако в настоящее время принято пользоваться международной системой единиц (СИ). Здесь работа измеряется в джоулях (Дж), а мощность в ваттах (Вт) (1 ккал = 4187 Дж, 1 кДж = 0,28 Вт =0,239 ккал/час).
Функциональный метаболизм спортсмена связан с выполнением механической работы и затратами метаболической энергии. Поэтому при делении внешней механической мощности на метаболические затраты получается оценка коэффициента полезного действия. При педалировании на велоэргометре коэффициент полезного действия составляет 22-24%, а при вращении рукоятки — 20- 21%.
Энергообеспечение зависит от мощности (интенсивности) выполняемой работы. Максимальная мощность связана с затратами энергии молекул АТФ и КрФ, и длительность этой ра-
55
боты не превышает 15-30 с. Если заданная мощность может поддерживаться 30-60 с, то говорят о преимущественной доле анаэробного гликолиза в энергообеспечении мышечной деятельности. Когда работа продолжается без снижения мощности более 1 мин, то говорят о преимущественном вкладе в энергообеспечение аэробного гликолиза или окисления жиров. В связи с этим Н.И. Волков (1990) предложил каждый механизм энергообеспечения характеризовать мощностью, эффективностью и емкостью.
Предложенный еще в 1955г. Р-О. Астрандом способ оценки работоспособности спортсменов и представленный в России Н.И. Волковым (1969) и И.В. Ауликом(1990) явно устарел, поскольку модель, которой они пользовались, была очень простой. Старая модель не учитывает современных достижений физиологии человека, в частности: строения мышц, правила рекрутирования мышечных волокон и многого другого.
Устаревший вариант интерпретации метаболических процессов в организме человека представляется следующим образом. Алактатный механизм оценивается максимальной алактатной мощностью (мощность спринта длительностью 3-5 с), эффективность — коэффициентом полезного действия (КПД), емкость — запасами АТФ и КрФ. Здесь следует заметить, что эффективность алактатного механизма энергообеспечения зависит от активности работы ферментов — миози-новой АТФ-азы и КрФ-азы, деятельность которых зависит от температуры, степени закисления мышечного волокна. КПД зависит также от техники (Селуянов В.П., Савельев И.А., 1982), например, при педалировании с темпом более 150 об/мин у велосипедистов КПД может доходить до 37%, а у спортсменов, которые подпрыгивают на седле, КПД может снизиться до 10% (почти вся энергия будет тратиться на подъем туловища). В связи с этим точно оценить эффективность алактатного механизма невозможно. Емкость алактатного механизма, как правило, также оценить невозможно, поскольку все спортсмены достигают максимума мощности к 3-5 с, а затем мощность неизменно снижается. Методом биопсии было установлено (см. обзоры Норре1ег П., 1986; Кагlsson J., 1971, 1981, 1982 ), что у всех людей и спортсменов концентрации АТФ и КрФ примерно одинаковые, и
56
только временно можно увеличить запасы КрФ в мышечных волокнах на 10-30% с помощью приема за 30-40 мин до начала тестирования пищевой добавки — Креатинфосфат моногидрат. Через несколько часов концентрация КрФ в мышцах нормализуется (Rossiter Н. еt а1. 1996).
Мощность механизма анаэробного гликолиза предложено оценивать с помощью упражнения, в котором предельная продолжительность равна 30-60 с. Например, Вингейтский тест, длительность которого 30 с. В этом случае также можно дать иную интерпретацию, поскольку в 70-е годы не могли корректно оценивать вклад анаэробного гликолиза в метаболические затраты испытуемого при выполнении работы с околомаксимальной мощностью. Емкость анаэробного гликолиза оценивалась по величине кислорода, который был потреблен после выполнения требуемого тестового здания. Поскольку потребление кислорода приходило в норму после часа восстановления, то все избыточное потребление кислорода относят к алактатному и анаэробному гликолитическому долгу. В этом случае лактацидный долг оценивался в величину 16-20 л запроса кислорода. Эти оценки противоречат величинам кислородного запроса. Например, МАМ = 900 Вт, а мощность в Вингейтском тесте составляет 80% от МАМ или 750 Вт., Если КПД=23%, то 75 Вт соответствует 1 л/мин потребления кислорода. Следовательно, за 30 сек. человек должен был потребить 5 л кислорода — это кислородный запрос, он значительно меньше величины потребления кислорода во время восстановления. Этот факт был обнаружен итальянским ученым Р. Маргариа еще в 70-е годы. Именно он стал утверждать, что емкость анаэробного механизма не может превышать более 4-5 л кислородного эквивалента. В представленном случае кислородный запрос обеспечивается энергией молекул АТФ и КрФ на 2 л, потреблением кислорода за время работы 1,8л, тогда на анаэробный гликолиз остается только 1,2 л. Заметим, что в случае наличии 100% окислительных мышечных волокон в активных мышцах анаэробного гликолиза вообще может не наблюдаться. следовательно, упражнения с предельной продолжительностью 30-60 с позволяют оценить скорее уровень аэробной подготовленности мышц, поскольку в случае повышения аэробных возможностей мышц они меньше закисляются,
57
при прочих равных условиях происходит рост средней мощности в данном задании, за счет поддержания мощности до конца задания (30 или 60 с).
Аэробные возможности оценивают по мощности или величине максимального потребления кислорода. Этот показатель с 80-х годов подвергается серьезной критике, поскольку на выборке спортсменов высокой квалификации практически теряет информативность. Потребление кислорода, мощность на уровне анаэробного порога являются более надежными и информативными показателями, поскольку позволяют с высокой точностью предсказывать спортивные достижения в циклических видах спорта. Эффективность аэробного механизма или КПД при работе на велоэргометре равен 23-24% и не меняется, поэтому определение этого показателя такая же бессмыслица, как и во всех других случаях. Емкость аэробного механизма связана с запасами в мышцах гликогена и капелек жира. Запаса этих веществ у обычных людей хватает на 45-60 мин, а у спортсменов запасов может хватить на 1,5-3 часа (Физиология мышечной деятельности, 1982). Причем при регулярном приеме углеводов по ходу выполнения упражнения продолжительность упражнения многократно возрастает, как, например, у лыжников или велосипедистов (Алиханова Л.И., 1983). Следовательно, в спорте определение емкости не имеет никакого смысла с точки зрения успешности выступления спортсмена в соревнованиях, длительность которого не превышает 30 мин.
Таким образом, определение у спортсмена мощности, эффективности и емкости биоэнергетических механизмов по методике Н.И. Волкова не учитывает физиологические особенности реакции организма на выполняемую физическую работу. Например, невозможность перехода молекул АТФ или КрФ из одного мышечного волокна в другое, или из одной мышцы в другую. Поэтому при выполнении упражнений с использованием локальных мышечных групп, например руками, оценки мощности, эффективности и емкости будут иными. Однако проблема локальной работоспособности у биоэнергетиков пока не нашла интереса.
58
