Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Неорганическая химия.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.26 Mб
Скачать

1. Альдегиды и кетоны: строение, изомерия, номенклатура. Химические свойства. Основность. Реакции нуклеофильного присоединения. Восстановление до спиртов и углеводородов. Реакции ароматических альдегидов и кетонов с участием ароматического ядра.

Альдегиды и кетоны относятся к карбонильным органическим соединениям.  Карбонильными соединениями называют органические вещества, в молекулах которых имеется группа >С=О (карбонил или оксогруппа).

Общая формула карбонильных соединений:

В зависимости от типа заместителя Х эти соединения подразделяют на: альдегиды (Х = Н ); кетоны ( Х = R, R' ); карбоновые кислоты ( Х = ОН ) и их производные (Х = ОR, NH2, NHR, Hal и т.д.). 

Альдегиды - органические соединения, в молекулах которых атом углерода карбонильной группы (карбонильный углерод) связан с атомом водорода. Общая формула:   R–CН=O  или

R = H, алкил, арил

Функциональная группа –СН=О называется альдегидной.  Кетоны - органические вещества, молекулы которых содержат карбонильную группу, соединенную с двумя углеводородными радикалами. Общие формулы:   R2C=O,  R–CO–R'  или

R, R' = алкил, арил

Строение альдегидов и кетонов.

Свойства альдегидов и кетонов определяются строением карбонильной группы >C=O.

Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp2-гибридизации. Углерод своими sp2-гибридными орбиталями образует 3s-связи (одна из них - связь С–О), которые располагаются в одной плоскости под углом около 120° друг к другу. Одна из трех sp2-орбиталей кислорода участвует в s-связи С–О, две другие содержат неподеленнные электронные пары. p-Связь образована р-электронами атомов углерода и кислорода.

Связь С=О сильно полярна. Ее дипольный момент (2,6-2,8D) значительно выше, чем у связи С–О в спиртах (0,70D). Электроны кратной связи С=О, в особенности более подвижные p-электроны, смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда. Карбонильный углерод приобретает частичный положительный заряд.

Поэтому углерод подвергается атаке нуклеофильными реагентами, а кислород - электрофильными, в том числе Н+.

В молекулах альдегидов и кетонов отсутствуют атомы водорода, способные к образованию водородных связей. Поэтому их температуры кипения ниже, чем у соответствующих спиртов. Метаналь (формальдегид) - газ, альдегиды С2–C5 и кетоны С3–С4 - жидкости, высшие - твердые вещества. Низшие гомологи растворимы в воде, благодаря образованию водородных связей между атомами водорода молекул воды и карбонильными атомами кислорода. С увеличением углеводородного радикала растворимость в воде падает.

Номенклатура альдегидов и кетонов.

Систематические названия альдегидов строят по названию соответствующего углеводорода и добавлением суффикса -аль. Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении.

Формула

Название

систематическое

тривиальное

H2C=O

метаналь

муравьиный альдегид (формальдегид)

CH3CH=O

этаналь

уксусный альдегид (ацетальдегид)

(CH3)2CHCH=O

2-метил-пропаналь

изомасляный альдегид

CH3CH=CHCH=O

бутен-2-аль

кротоновый альдегид

Систематические названия кетонов несложного строения производят от названий радикалов (в порядке увеличения) с добавлением слова кетон. Например: CH3–CO–CH3 - диметилкетон (ацетон);

CH3CH2CH2–CO–CH3 - метилпропилкетон. 

В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса -он; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе (заместительная номенклатура ИЮПАК).

Примеры: CH3–CO–CH3 - пропанон (ацетон);

CH3CH2CH2–CO–CH3 - пентанон-2; 

CH2=CH–CH2–CO–CH3 - пентен-4-он-2.

Номенклатура альдегидов и кетонов.

Для альдегидов и кетонов характерна структурная изомерия.

Изомерия альдегидов:

изомерия углеродного скелета, начиная с С4

межклассовая изомерия с кетонами, начиная с С3  

циклическими оксидами (с С2)     

непредельными спиртами и простыми эфирами (с С3)

Изомерия кетонов: углеродного скелета (c C5)

положения карбонильной группы (c C5)

межклассовая изомерия (аналогично альдегидам).

Реакции нуклеофильного присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи. Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и дает продукт присоединения:

Активность карбонильных соединений в AdN–реакциях (реакции нуклеофильного присоединения) зависит от величины эффективного положительного заряда на карбонильном атоме углерода и объема заместителей у карбонильной группы. Электронодонорные и объемистые заместители затрудняют реакцию, электроноакцепторные заместители повышают реакционную способность карбонильного соединения. Поэтому альдегиды в AdN–реакциях активнее, чем кетоны.

Присоединение спиртов и тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей. При избытке спирта и в присутствии кислотного катализатора реакция идет дальше – до образования ацеталей

Кетоны в аналогичных условиях кеталей не дают.

Тиолы как более сильные нуклеофилы, чем спирты, образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях основного катализа с образованием циангидринов.

Присоединение бисульфита натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO3 c образованием бисульфитных производных.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты термодинамически не стабильны. Равновесие смещено в сторону продуктов присоединения только в случае активных карбонильных соединений.

Реакции нуклеофильного присоединения азотистых оснований.

К этим реакциям относятся:

а) образование иминов (азометинов) – оснований Шиффа

б) образование оксимов

в) образование гидразонов

г) синтез семикарбазонов

Восстановление до спиртов и углеводородов.

Присоединение водорода к молекулам альдегидов происходит по двойной связи в карбонильной группе. Продуктом гидрирования альдегидов являются первичные спирты, кетонов - вторичные.

а) восстановление по Клемменсену.

Если карбонильное соединение устойчиво к действию кислот, то используют этот тип восстановления

б) восстановление по Кижнеру-Вольфу

Этот вид восстановления используется в тех случаях, когда объект восстановления устойчив к основаниям

Аммиачный раствор гидроксида серебра [Ag(NH3)2]OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности — образуется сереб­ряное зеркало:

 

Кетоны в такие реакции не вступают.  У них идет «жесткое окисление» — разрыв связи С-С

Реакция галогенирования. Альдегиды и кетоны легко вступают в реакции с галогенами с образованием а-галогенопроизводные:

Реакции ароматических альдегидов и кетонов с участием ароматического ядра.

Различают следующие типы карбонильных соединений аренов.

В реакции электрофильного замещения ароматические альдегиды вступают в соответствии с правилами ориентации. Альдегидная группа электроноакцепторная группа, она проявляет —I; —М-эффекты и относится к мета-ориентантам.

Например:

Нитрование ацетофенона легко осуществляется нитрующей смесью при температуре 00С:

м-нитроацетофенон