Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Создание эффективных приложений для Windows Джеффри Рихтер 2004 (Книга).pdf
Скачиваний:
375
Добавлен:
15.06.2014
Размер:
8.44 Mб
Скачать

Стандартная куча процесса необходима многим Windows-функциям. Например, функции ядра Windows 2000 выполняют все операции с использованием Unicode символов и строк Если вызвать ANSI-версию какой-нибудь Windows-функции, ей придется, преобразовав строки ил ANSI в Unicode, вызывать свою Unicode-версию. Для преобразования строк ANSI-функции нужно выделить блок памяти, в котором она размещает Unicode-версию строки. Этот блок памяти заимствуется из стандартной кучи вызывающего процесса. Есть и другие функции, использующие временные бло ки памяти, которые тоже выделяются из стандартной кучи процесса Из нее же чер пают себе память и функции 16~разрядной Windows, управляющие кучами (LocalAlloc и GlobalAlloc).

Поскольку стандартную кучу процесса используют многие Windows-функции, а потоки Вашего приложения могут одновременно вызвать массу таких функций, дос туп к этой куче разрешается только по очереди. Иными словами, система гарантиру ет, что в каждый момент времени только один поток сможет выделить или освобо дить блок памяти в этой куче. Если же два потока попытаются выделить в ней блоки памяти одновременно, второй поток будет ждать, пока первый поток не выделит свой блок. Принцин последовательного доступа потоков к кучс немного снижает произ водительность многопоточной программы. Если в программе всего один поток, для быстрейшего доступа к кучс нужно создать отдельную кучу и нс использовать стан дартную. Но Windows-функциям этого, увы, не прикажешь — они работают с кучей только последнего типа.

Как я уже говорил, куч у одного процесса может быть несколько. Они создаются и разрушаются в период его существования. Но стандартная куча процесса создается в начале его исполнения и автоматически уничтожается по его завершении — сами уничтожить ее Вы нс можете. Каждую кучу идентифицирует своЙ описатель, и все Windows-функции, которые выделяют и освобождают блоки в ее пределах, требуют передавать им этот описатель как параметр.

Описатель стандартной кучи процесса возвращает функция GеtProcessHeap.

HANDLE GelProcessHeap();

Дополнительные кучи в процессе

В адресном пространстве процесса допускается создание дополнительных куч. Для чего они нужны? Тому может быть несколько причин:

защита компонентов; более эффективное управление памятью; локальный доступ;

исключение издержек, связанных с синхронизацией потоков; быстрое освобождение всей памяти в куче.

Рассмотрим эти причины подробнее.

Защита компонентов

Допустим, программа должна обрабатывать два компонентасвязанный список струк тур NODE и двоичное дсрсво структур BRANCH. Представим также, что у Вас есть два

файла исходного кода: LnkLst.cpp, содержащий функции для обработки связанного списка, и BinTree.cpp с функциями для обработки двоичного дерева

Если структуры NODE и BRANCH хранятся в одной куче, то она может выглядеть примерно так, как показано на рис. 18-1.

Рис. 18-1. Единая куча, в которой размещены структуры NODE и BRANCH

Теперь предположим, что в коде, обрабатывающем связанный список, «сидит жу чок", который приводит к случайной перезаписи 8 байтов после NODE 1 А это в свою очередь влечет порчу данных в BRANCH 3 Впоследствии, когда код из файла Bin Tree.cpp пьтается «пройти" по двоичному дереву, происходит сбой из-за того, что часть данных в памяти испорчена. Можно подумать, что ошибка возникает из-за «жуч ка» в коде двоичного дерева, тогда как на самом деле он — в коде связанного списка. А поскольку разные типы объектов смешаны в одну кучу (в прямом и переносном смысле), то отловить «жучков» в коде становится гораздо труднее.

Создав же две отдельные кучи — одну для NODE, другую для BRANCH, — Вы ло кализуете место возникновения ошибки. И тогда «жучок» в коде связанного списка не испортит целостности двоичного дерева, и наоборот. Конечно, всегда остается веро ятность такой фатальной ошибки в коде, которая приведет к записи данных в посто роннюю кучу, но это случается значительно реже.

Более эффективное управление памятью

Кучами можно управлять гораздо эффективнее, создавая в них объекты одинакового размера. Допустим, каждая структура NODE занимает 24 байта, а каждая структура BRANCH — 32. Памятьдля всех этих объектов выделяется из одной кучи. На рис. 18-2 показано, как выглядит полностью занятая куча с несколькими объектами NODE и BRANCH. Если объекты NODE 2 и NODE 4 удаляются, память в куче становится фраг ментированной И если после этого попытаться выделить в ней память для структу ры BRANCH, ничего не выйдет — даже несмотря на то что в куче свободно 48 байтов, а структура BRANCH требует всего 32.

Если бы в каждой куче содержались объекты одинакового размера, удаление од ного из них позволило бы в дальнейшем разместить другой объект того же типа.

Рис. 18-2. Фрагментированная куча, содержащая несколько объектов NODE и BRANCH

Локальный доступ

Перекачка страницы ил оперативной памяти в страничный файл занимает ощутимое время. Та же задержка происходит и в момент загрузки страницы данных обратно в оперативную память. Обращаясь в основном к памяти, локализованной в небольшом диапазоне адресов, Вы снизите вероятность перекачки страниц между оперативной памятью и страничным файлом.

Поэтому при разработке приложения старайтесь размещать объекты, к которым необходим частый доступ, как можно плотнее друг к другу. Возвращаясь к примеру со связанным списком и двоичным деревом, отмечу, что просмотр списка не связан с просмотром двоичного дерева Разместив все структуры NODE друг за другом в од ной куче, Вы, возможно добьетесь того, что по крайней мере несколько структур NODE умесгятся в пределах одной страницы физической памяти. И тогда просмотр связанного списка не потребует от процессора при каждом обращении к какой-либо структуре NODE переключаться с одной страницы на другую.

Если же «свалить" оба типа cтpyктyp в одну кучу, обьекты NODE необязательно будут размещены строго друг за другом. При самом неблагоприятном стечении об стоятельств на странице окажется всего одна структура NODE, a остальное место зай мут структуры BRANCH. B этом случае просмотр связанного списка будет приводить к ошибке страницы (page fault) при обращении к каждой структуре NODE, что в ре зультате может чрезвычайно замедлить скорость выполнения Вашего процесса.

Исключение издержек, связанных с синхронизацией потоков

Доступ к кучам упорядочивается по умолчанию, поэтому при одновременном обра щении нескольких потоков к куче данные в ней никогда не повреждаются. Однако для этого функциям, работающим с кучами, приходится выполнять дополнительный код. Если Вы интенсивно манипулируете с динамически распределяемой памятью, выпол нение дополнительного кода может заметно снизить быстродействие Вашей програм мы. Создавая новую кучу, Вы можете сообщить системе, что единовременно к этой кучс обращается только один поток, и тогда дополнительный код выполняться не

будет. Но береритесь: теперь Вы берете всю ответственность за целостность этой кучи на себя. Система не станет присматривать за Вами.

Быстрое освобождение всей памяти в куче

Наконец, использование отдельной кучи для какой-то структуры данных позволяет освобождать всю кучу, не перебирая каждый блок памяти. Например, когда Windows Explorer перечисляет иерархию каталогов на жестком диске, он формирует их дере во в памяти. Получив команду обновить эту информацию, он мог бы просто разру шить кучу, содержащую это дерево, и начать все заново (если бы, конечно, он исполь зовал кучу, выделенную только для информации о дереве каталогов). Бо многих при ложениях это было бы очень удобпо, да и быстродействие тоже возросло бы.

Создание дополнительной кучи

Дополнительные кучи в процессе создаются вызовом HeapCreate

HANDLE HeapCreate( DWORD fdwOptions, SIZE_T dwInitialSize, SIZE_T dwMaximumSize);

Параметр fdwOptions модифицирует способ выполнения операций над кучей. В нем можно указать 0, HEAP_NO_SERIALIZE, HEAP_GENERATE_EXCEPTIONS или комбинацию последних двух флагов.

По умолчанию действует принцип последовательного доступа к куче, что позво ляет не опасаться одновременного обращения к ней сразу нескольких потоков. При попытке выделения из кучи блока памяти функция HeapAlloc (ее параметры мы обсу дим чуть позже) делает следующее:

1.Просматривает связанный список выделенных и свободных блоков памяти.

2.Находит адрес свободного блока.

3.Выделяет новый блок, помечая свободный как занятый.

4.Добавляет новый элемент в связанный список блоков памяти.

Флаг HEAP_NO_SERIALIZE использовать нс следует, и вот почему. Допустим, два потока одновременно пытаются выделить блоки памяти из одной кучи. Первый по ток выполняет операции по пп 1 и 2 и получает адрес свободного блокз памяти. Но только он соберется перейти к третьему этапу, как сго вытеснит второй поток и тоже выполнит операции по пп. 1 и 2. Поскольку первый поток не успел дойти до этапа 3, второй поток обнаружит тот же свободный блок памяти,

Итак, оба потока считают, что они нашли свободный блок памяти в куче. Поэтому поток 1 обновляет связанный список, помечая новый блок как занятый. После этого и поток 2 обновляет связанный список, помечая тот же блок как занятый. Ни один из потоков пока