- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
if (pWideCharStr == NULL) return(fOk);
//преобразуем нультибайтовую строку в широкосимвольную
MultiByteToWideChar(CP_ACP, 0, pMulti8yteStr, -1, pWideCharStr, nLenOfWideCharStr);
//вызываем широкосимвольную версию этой функции для выполнения настоящей работы
fOk = StnngReverseW(pWideCharStr);
if (fOk} {
//преобразуем широкосимвольную строку обратно в мультибайтовую
WideCharToMultiByte(CP_ACP, 0, pWideCharStr, -1, pMultiByteStr, strlen(pMultiByteStr), NULL, NULL);
}
//освобождаем память, выделенную под широкобайтовую строку
HeapFree(GetProcessHeap(), 0, pWideCharStr);
return(fOk),
}
И, наконец, в заголовочном файле, поставляемом вместе с DLL, прототипы этих функций были бы такими:
BOOL StringReverseW (PWSTR pWideCharStr);
BOOL StringReverseA (PSTR pMultiByteStr);
#ifdef UNICODE
#define StnngReverse StringReverseW #else
#define StringRevcrsc StringReverseA #endif // UNICODE
ГЛАВА 3 Объекты ядра
Изучение Windows API мы начнем с объектов ядра и их описателей (handles). Эта глава посвящена сравнительно абстрактным концепциям, т. e. мы, не углубляясь в специфику тех или иных объектов ядра, рассмотрим их общие свойства.
Я бы предпочел начать с чего-то более конкретного, но без четкого понимания объектов ядра Вам не стать настоящим профессионалом в области разработки Windows-программ. Эти объекты используются системой и нашими приложениями для управления множеством самых разных ресурсов процессами, потоками, файлами и т. д. Концепции, представленные здесь, будут встречаться на протяжении всей книги. Однако я прекрасно понимаю, что часть материалов не уляжется у Вас в голове до тех пор, пока Вы не приступите к работе с объектами ядра, используя реальные функции. И при чтении последующих глав книги Вы, наверное, будете время от времени возвращаться к этой главе.
Что такое объект ядра
Создание, открытие и прочие операции с объектами ядра станут для Вас, как разработчика Windows-приложений, повседневной рутиной. Система позволяет создавать и
оперировать с несколькими типами таких объектов, в том числе, маркерами доступа
(access token objects), файлами (file objects), проекциями файлов (file-mapping objects), портами завершения ввода-вывода (I/O completion port objects), заданиями (job objects), почтовыми ящиками (mailslot objects), мьютсксами (mutex objects), каналами (pipe objects), процессами (process objects), семафорами (semaphore objects), потоками (thread objects) и
ожидаемыми таймерами (waitable timer objects). Эти объекты создаются Windowsфункциями Например, CreateFtleMapping заставляет систему
сформировать объект "проекция файла". Каждый объект ядра — на самом деле просто блок памяти, выделенный ядром и доступный только ему. Этот блок представляет собой структуру данных, в элементах которой содержится информация об объекте. Некоторые элементы (дескриптор защиты, счетчик числа пользователей и др.) присутствуют во всех объектах, но большая их часть специфична для объектов конкретного типа. Например, у объекта "процесс" есть идентификатор, базовый приоритет и код завершения, а у объекта "файл" — смещение в байтах, режим разделения и режим открытия
Поскольку структуры объектов ядра доступны только ядру, приложение не может самостоятельно найти эти структуры в памяти и напрямую модифицировать их содержимое Такое ограничение Microsoft ввела намеренно, чтобы ни одна программа не нарушила целостность структур объектов ядра. Это же ограничение позволяет Microsoft вводить, убирать или изменять элементы структур, нс нарушая работы каких-либо приложений.
Но вот вопрос: если мы не можем напрямую модифицировать эти структуры, то как же наши приложения оперируют с объектами ядра? Ответ в том, что в Windows
предусмотрен набор функций, обрабатывающих структуры объектов ядра по строго определенным правилам. Мы получаем доступ к объектам ядра только через эти функции. Когда Вы вызываете функцию, создающую объект ядра, она возвращает описатель, идентифицирующий созданный объект, Описатель следует рассматривать как "непрозрачное" значение, которое может быть использовано любым потоком Вашего процесса. Этот описатель Вы передаете Windows-функциям, сообщая системе, какой объект ядра Вас интересует. Но об описателях мы поговорим позже (в этой главе).
Для большей надежности операционной системы Microsoft сделала так, чтобы значения описателей зависели от конкретного процесса. Поэтому, если Вы передадите такое значение (с помощью какого-либо механизма межпроцессной связи) потоку другого процесса, любой вызов из того процесса со значением описателя, полученного в Вашем процессе, даст ошибку. Но не вользуйтесь, в конце главы мы рассмотрим три механизма корректного использования несколькими процессами одного объекта ядра.
Учет пользователей объектов ядра
Объекты ядра принадлежат ядру, а не процессу. Иначе говоря, если Ваш процесс вызывает функцию, создающую объект ядра, а затем завершается, объект ядра может быть не разрушен. В большинстве случаев такой объект все же разрушается; но если созданный Вами объект ядра используется другим процессом, ядро запретит разрушение объекта до тех пор, пока от него не откажется и тот процесс.
Ядру известно, сколько процессов использует конкретный объект ядра, посколь ку в каждом объекте есть счетчик числа его пользователей. Этот счетчик — один из элементов данных, общих для всех типов объектов ядра. В момепт создания объекта счетчику
присваивается 1. Когда к существующему объекту ядра обращается другой процесс, счетчик увеличивается на 1. А когда какой-то процесс завершается, счетчики всех используемых им объектов ядра автоматически уменьшаются на 1. Как только счетчик какого-либо объекта обнуляется, ядро уничтожает этот объект.
Защита
Объекты ядра можно защитить дескриптором защиты (security descriptor), который описывает, кто создал объект и кто имеет права на доступ к нему. Дескрипторы защиты обычно используют при написании серверных приложений; создавая клиентское приложение, Вы можете игнорировать это свойство объектов ядра.
WIN98:
В Windows 98 дескрипторы защиты отсутствуют, так как она не предназначена для выполнения серверных приложений. Тем не менее Вы должны знать о тонкостях, связанных с защитой, и реализовать соответствующие механизмы, чтобы Ваше приложение корректно работало и в Windows 2000.
Почти все функции, создающие объекты ядра, принимают указатель на структуру
SECURITY_ATTRIBUTES как аргумент, например:
HANDLE CreateFileMapping(
HANDLE hFile.
PSECURITY_ATTRIBUTES psa,
DWORD flProtect,
DWORD dwMaximumSizeHigh,
DWORD dwMaximuniSizeLow,
PCTSTR pszNarne);
Большинство приложений вместо этого аргумента передает NULL и гоздает объект с защитой по умолчанию. Такая защита подразумевает, что создатель объекта и любой член группы администраторов получают к нему полный доступ, а все прочие к объекту не допускаются Однако Вы можете создать и инициализировать структуру SECURITY_ATTRIBUTES, а затем передать ее адрес. Она выглядит так:
typedef struct _SECURITY_ATTRIBUTES { DWORD nLength,
LPVOID lpSecurityDescriptor; BOOL bInherttHandle;
} SECURITY_ATTRIBUTES;
Хотя структура называется SECURITY__ATTRIBUTES, лишь один cc элемент имеет отношение к защите — lpSecuntyDescnptor. Если надо ограничить доступ к созданному Вами объекту ядра, создайте дескриптор защиты и инициализируйте структуру
SECURITY_ATTRIBUTES следующим образом:
SECURITY_ATTRIBUTES sa;
sa.nLength = sizeof(sa); // используется для выяснения версий sa.lpSecuntyDescriptor = pSD, // адрес инициализированной SD sa.bInheritHandle = FALSE; // об этом позже
HANDLE hFileMapping = CreateFileMapping(INVALID_HANDLE_VALUE, &sa, PAGE_REAOWRITE, 0, 1024, "MyFileMapping");
Рассмотрение элемента bInheritHandle я отложу до раздела о наследовании, так как этот элемент не имеет ничего общего с защитой.
Желая получить доступ к существующему объекту ядра (вместо того чтобы создавать новый), укажите, какие операции Вы намерены проводить над обьектом. Например, если бы я захотел считывать данные из существующей проекции файла, то вызвал бы функцию
OpenFileMapping таким образом;
HANDLE hFileMapping = OpenFileMapping(FILE_MAP_READ, FALSE, "MyFileMapping");
Передавая FILE_MAPREAD первым параметром в функцию OpenFileMapping, я сообщаю, что, как только мне предоставят доступ к проекции файла, я буду считывать из нее данные. Функция OpenFileMapping, прежде чсм вернуть действительный описатель, проверяет тип защиты объекта. Если меня, как зарегистрировавшегося пользователя, допускают к существующему объекту ядра "проекция файла", OpenFileMapping возвращает действительный описатель. Но если мне отказывают в доступе,
OpenFileMapping
возвращает NULL, а вызов GetLastError дает код ошибки 5 (или ERROR_ACCESS_DENIED). Но опять же, в основной массе приложений защиту не используют, и поэтому я больше не буду задерживаться на этой теме
WINDOWS 98:
Хотя в большинстве приложений нет нужды беспокоиться о защите, многие функции Windows требуют, чтобы Вы передавали им информацию о нужном уровне защиты. Некоторые приложения, написанные для Windows 98, в Windows 2000 толком не работают из-за того, что при их реализации не было уделено должного внимания защите.
Представьте, что при запуске приложение считывает данные из какого-то раздела реестра Чтобы делать это коррекчно, оно должно вызывать функцию RegOpenKeyEx, передавая значение KEY_QUERY_VALUE, которое разрешает операцию чтения в указанном разделе.
Однако многие приложения для Windows 98 создавались без учета специфики Windows 2000 Поскольку Windows 98 не защищает свой реестр, разработчики часто вызывали RegQpenKeyEx со значением KEY_ALL_ACCESS. Так проще и не надо ломать голову над том, какой уровень доступа требуется на самом деле. Но проблема в том, что раздел реестра может быть доступен для чтения и блокирован для записи. В Windows 2000 вызов RegOpenKeyEx со значением KEY_ALL_ACCESS заканчивается неудачно, и без соответствующего контроля ошибок приложение может повести себя совершенно непредсказуемо.
Если бы разработчик хоть немного подумал о защите и поменял значение
KEY_ALL_ACCESS на KEY_QUERY_VALUE (только-то и всего!), его продукт мог бы работать в обеих операционных системах
Пренебрежение флагами, определяющими уровень доступа, — одна из самых крупных ошибок, совершаемых разработчиками Правильное их использование позволило бы легко перенести многие приложения Windows 98 в Windows 2000
Кроме объектов ядра Ваша программа может использовать объекты других типов — меню, окна, курсоры мыши, кисти и шрифты. Они относятся к объектам User или GDI Новичок в программировании для Windows может запутаться, пытаясь отличить объекты User или GDI от объектов ядра. Как узнать, например, чьим объектом — User или ядра — является данный значок? Выяснить, не принадлежит ли объект ядру, проще всего так проанализировать функцию, создающую объект. Практически у всех функций, создающих объекты ядра, есть параметр, позволяющий указать атрибуты защиты, — как у
CreateFileMapping.
