
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
Первый класс, CSystemInfo, — очень простая оболочка функции GetSystemInfo По одному его экземпляру создают остальные два класса
Второй С++-класс, CAddrWindow, инкапсулирует адресное окно Его метод Create резервирует адресное окно, метод Destroy уничтожает это окно, метод UnmapStorage отключает от окна связанный с ним блок памяти, я метод оператора приведения PVOID просто возвращает виртуальный адрес адресного окна.
Третий C++-класс, CAddrWindowStorage, инкапсулирует блок памяти, который можно назначить объекту класса CAddrWindow Метод Attocate разрешает блокировать страницы в памяти, выделяет блок памяти, а затем отменяет право на блокировку, Метод Free освобождает блок памяти Метод HowManyPagetAllocated возвращает ко личество фактически выделенных страниц. Наконец, метод MapStorage связывает блок памяти с объектом класса CAddrWmdow, a UnmapStorage отключает блок от этого объекта.
Применение C++ классов существенно упростило реализацию программы AWE Она создает по два объекта классов CAddrWindow и CAddrWindowStorage Остальной код просто вьзывает нужные методы в нужное время
ГЛАВА 16 Стек потока
Иногда система сама резервирует какие-то регионы в адресном пространстве Ва шего процесса. Я уже упоминал в главе 13, что это делается для размещения блоков переменных окружения процесса и его потоков. Еще один случай резервирования ре гиона самой системой — создание стека потока
Всякий раз, когда в процессе создается поток, система резервирует регион адрес ного пространства для стека потока (у каждого потока свой стек) и передает этому региону какой-то объем физической памяти По умолчанию система резервирует 1 Мб адресного пространства и передает ему всего две страницы памяти. Но стандартные значения можно изменить, указав при сборке программы параметр компоновщика /STACK
/STACK. reserve [, commit]
Тогда при создании стека потока система зарезервирует регион адресного про странства, размер которого указан в параметре /STACK компоновщика Кроме того, объем изначально передаваемой памяти можно переопределить вызовом CreateThread или _beginthreadex. У обеих функций есть параметр, который позволяет изменять объем памяти, изначально передаваемой региону стска Если в нем передать 0, систе ма будет использовать значение, указанное в параметре /STACK Далее я исхожу ич того, что стек создается со стандартными параметрами.
На рис. 16-1 показано, как может выглядеть регион стека (зарезервированный по адресу 0x08000000) в системе с размером страниц no 4 Кб Регион стека и вся пере данная ему память имеют атрибут защиты PAGE_READWRITE.
Зарезервировав регион, система передает физическую память двум верхним его страницам. Непосредственно перед тем, как приступить к выполнению потока, сис тема устанавливает регистр указателя стека на конец верхней страницы региона сте ка (адрес, очень близкий к 0x08100000). Это та страница, с которой поток начнет использовать свой стек Вторая страница сверху называется сторожевой (guard page)

По мере разрастания дерева вызовов (одновременного обращения ко все больше му числу функций) потоку, естественно, требуется и больший объем стека. Как толь ко поток обращается к следующей странице (а она сторожевая), система уведомляет ся об этой попытке. Тогда система передает память еще одной странице, расположен ной как раз за сторожевой. После чего флаг PAGE_GUARD, как эстафетная палочка, переходит от текущей сторожевой к той странице, которой только что передана па мять. Благодаря такому механизму объем памяти, занимаемой стеком, увеличивается только по необходимости. Если дерево вызовов у потока будет расти и дальше, реги он стека будет выглядеть примерно так, как показано на рис. l6-2
Допустим, стек потока практически заполнен (как па рис. l6-2) и регистр указа теля стека указывает на адрес 0x08003004. Тогда, как только поток вызовет еще одну функцию, система, по идее, должна передать дополнительную физическую память. Но
когда система передает! память странице по адресу 0x08001000, она делает это уже подругому Регион стека теперь выглядит, как на рис l6-3
Рис. 16-1. Так выглядит регион стека потока сразу после его создания

Рис. 16-2. Почти заполненный регион стека потока
Рис. 16-3. Целиком заполненный регион стека потока

Как и можно было предполагать, флаг PAGE_GUARD со страницы по адресу 0x08002000 удаляется, а странице по адресу 0x08001000 передается физическая па мять. Но этой странице не присваивается флаг PAGE_GUARD. Это значит, что региону адресного пространства, зарезервированному под стек потока, теперь передана вся физическая память, которая могла быть ему передана. Самая нижняя страница оста ется зарезервированной, физическая память ей никогда не передается. Чуть позже я поясню, зачем это сделано
Передавая физическую память странице по адресу 0x08001000, система выполня ет еще одну операцию генерирует исключение EXCEPTION_STACK_OVERFLOW (в файле WinNT.h оно определено как 0xC00000FD). При использовании структурной обработки исключений (SEH) Ваша программа получит уведомление об этой ситуа ции и сможет корректно обработать ее. Подробнее о SEH см. главы 23, 24 и 25, а так же листинг программы Summation, приведенный в конце этой главы
Если поток продолжит использовать стек даже после исключения, связанного с переполнением стека, будет задействована вся память на странице по адресу 0x08001000, и поток попытается получить доступ к странице по адресу 0x08000000 Поскольку эта страница лишь зарезервирована (но не передана), возникнет исклю чение — нарушение доступа. Если это произойдет в момент обращения потока к сте ку, Вас ждут крупные неприятности. Система возьмет управление на себя и завершит нс только данный поток, но и весь процесс И даже не сообщит об этом пользовате лю; процесс просто исчезнет!
Теперь объясню, почему нижняя страница стека всегда остается зарезервирован ной Это позволяет защищать другие данные процесса от случайной перезаписи Ви дите ли, по адресу 0x07FFF000 (па 1 страницу ниже, чем 0x08000000) может быть передана физическая память для другого региона адресного пространства. Если бы странице по адресу 0x08000000 была передана физическая память, система не суме
ла бы перехватить попытку потока расширить стек за прелелы зарезервированного региона. А если бы стек расползся за пределы этого региона, поток мог бы перезапи сать другие даипые в адресном пространстве своего процесса — такого *жучка» вы ловить очень сложно.
Стек потока в Windows 98
В Windows 98 стеки ведут себя почти так же, как и в Windows 2000. Но отличия все же есть.
На рис. 16-4 показано, как в Windows 98 может выглядеть регион стека (зарезер вированный с адреса 0x00530000) размером 1 Мб.
Адрес |
Размер |
Состояние страницы |
|
0x00640000 |
16 страниц (65 536 байтов) |
Верхняя часть стека (зарезервирована для перехвата обращений к |
|
|
|
|
несуществующей области стека) |
|
|
|
|
0x0063F000 |
1 |
страница (4096 байтов) |
Переданная страница с атрибутом PAGE_READWRITE |
|
|
|
(задействованная область стека) |
|
|
|
|
0x0063E000 |
1 |
страница (4096 байтов) |
Страница с атрибутом PAGE_NOACCESS (заменяет флаг |
|
|
|
PAGE_GUARD) |
|
|
|
|
0x00638000 |
6 |
страниц (24 576 байтов) |
Страницы, зарезервированные для перехвата переполнения стека |
|
|
|
|

0x00637000 |
1 страница (4096 байтов) |
Переданная страница с атрибутом PAGE_READWRITE (для |
|
|
совместимости с 16-разрядными компонентами) |
|
|
|
0x00540000 |
247 страниц (1 011 712 |
Страницы, зарезервированные для дальнейшего расширения стека |
|
байтов) |
|
|
|
|
0x00530000 |
16 страниц (65 536 байтов) |
Нижняя часть стека {зарезервирована для перехвата переполнения |
|
|
стека) |
|
|
|
Рис. 16-4. Так выглядит регион стека сразу после его создания под управлением Windows 98
Во-первых, размер региона на самом дслс 1 Мб плюс 1 28 Кб, хотя мы хотели соз дать стек объемом всего 1 Мб. В Windows 98 система резервирует под стек на 128 Кб больше, чсм было запрошено. Собственно стек располагается в середине этого реги она, а по обеим его границам размещаются блоки по 64 Кб каждый.
Блок перед стеком предназначен для перехвата его переполнения, а блок после стска — для перехвата обращений к несуществующим областям стека. Чтобы понять, какая польза от последнего блока, рассмотрим такой фрагмент кода:
int WINAPI WinMain(HINSTANCE hinstExe, HINSTANCE, PSTR pszCmdLine, int nGmdShow)
{
char szBuf[100];
szBuf[10000] - 0; // обращение к несуществующей области стека
return(0);
}
Когда выполняется оператор присвоения, происходит попытка обращения за ко нец стека потока. Разумеется, ни компилятор, ни компоновщик не уловят эту ошибку в приведенном фрагменте кода, по, если приложение работает под управлением Win
dows 98, выполнение этого оператора вызовет нарушение доступа. Это одна из при ятных особенностей Windows 98, отсутствующих в Windows 2000, в которой сразу за стеком потока может быть расположен другой регион И если Вы случайно обрати тесь за пределы стека, Вы можете испортить содержимое области памяти, принадле жащей другой части Вашего процесса, — система ничего не заметит.
Второе отличие: в стске нет страниц с флагом атрибутов защиты PAGE_GUARD. Пocкoлькy Windows 98 такой флаг не поддерживает, при расширении стека потока она действует несколько иначе. Она помечает страницу переданной памяти, располагаемой под стеком, атрибутом PAGE_NOACCESS (на рис, 16-4 — по адресу 0х0063Е000). Когда поток обращается к этой странице, происходит нарушение доступа. Система пере хватывает это исключение, меняет атрибут защиты страницы с PAGE_NOACCESS на PAGE_READWRITE и передает память новой "сторожевой" странице, размещаемой сразу за предыдущей.
Третье: обратите внимание на единственную страницу с атрибутом PAGE_READ WRITE по адресу 0x00637000. Она создается для совместимости с 16-разрядной Win dows. Хотя Microsoft нигде нс говорит об этом, разработчики обнаружили, что пер вые 16 байтов cегмента стека 16-разрядной программы содержат информацию о ее стeке, локальной куче