
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch

памяти в страничный файл. Но если бы размер выгружаемой облас ти был меньше общего объема оперативной памяти, то не исключено, что исходное содержимое все равно осталось бы в памяти. Так что будьте осторожны!
Механизм Address Windowing Extensions (только Windows 2000)
Жизнь идет вперед, и приложения требуют все больше и больше памяти — особенно серверные. Чем выше число клиентов, обращающихся к серверу, тем меньше его про изводительность. Для увеличения быстродействия серверное приложение должно хранить как можно больше своих данных в оперативной памяти и сбрасывать их на диск как можно реже. Другим классам приложений (базам данных, программам для работы с трехмерной графикой, математическими моделями и др.) тоже нужно ма нипулировать крупными блоками памяти. И всем этим приложениям уже тесно в 32 разрядном адресном пространстве.
Для таких приложений Windows 2000 предлагает новый механизм — Address Win dowing Extensions (AWE). Создавая AWE, Microsoft стремилась ктому, чтобы приложе ния МОГЛИ:
работать с оперативной памятью, никогда не выгружаемой на диск операци онной системой; обращаться к таким объемам оперативной памяти, которые превышают раз меры
соответствующих разделов в адресных пространствах их процессов.
AWE дает возможность приложению выделять себе один и более блоков оператив ной памяти, невидимых в адресном пространстве процесса. Сделав это, приложение резервирует регион адресного пространства (с помощью VirtualAlloc), и он становит ся адресным окном (address window). Далее программа вызывает функцию, которая связывает адресное окно с одним из выделенных блоков оперативной памяти. Эта операция выполняется чрезвычайно быстро (обычно за пару микросекунд).
Через одно адресное окно единовременно доступен лишь один блок памяти. Это, конечно, усложняет программирование, так как при обращении к другому блоку при ходится явно вызывать функции, которые как бы переключают адресное окно на оче редной блок.
Вот пример, демонстрирующий использование AWE:
// сначала резервируем для адресного окна регион размером 1 Мб
ULONG_PTR ulRAMBytes = 1024 * 1024;
PVOlD pvWindow = VirtualAlloc(NULL, ulRAMBytes, MEM_RESERVE | MEMJ>HYSICAL, PAGE_REAOWRITE);
// получаем размер страниц на данной процессорной платформе
SYSTEM_INFO sinf;
GetSystemInfo(&sint);
//вычисляем, сколько страниц памяти нужно для нашего количества байтов
ULONG_PTR ulRAMPages = (ulRAMBytes + sinf.dwPageSize - 1) / sinf.dwPageSize;
//создаем соответствующий массив для номеров фреймов страниц
ULONG_PTR aRAMPages[ulRAHPages];
//выделяем сграницы оперативной памяти (в полномочиях пользователя
//должна быть разрешена блокировка страниц в памяти)
AllocateUserPhysicalPages(
GetCurrentProcess(), // выделяем память для нашего процесса &ulRAMPages, // на входе: количество запрошенных страниц RAM, // на выходе: количество выделенных страниц RAM aRAMPages); // на выходе специфический массив,
//идентифицирующий выделенные страницы
//назначаем страницы оперативной памяти нашему окну
MapUserPhysicalPages(
pvWindow, // адрес адресного окна ulRAMPages, // число элементов в массиве aRAHPages); // массив страниц RAM
//обращаемся к этим страницам через виртуальный адрес pvWindow
...
//освобождаем блок страниц оперативной памяти
FreeUserPhysicalPages(
GetCurrentProcess(), // освобождаем RAM, выделенную нашему процессу
&ulRAMPages, // на входе, количество страниц
RAM, // на выходе: количество освобожденных страниц RAM aRAMPages); // на входемассив, иден1ифицирующий освобождаемые
//страницы RAM
//уничтожаем адресное окно
VirtualFree(pvWindow, 0, MEM_RELbASE);
Как видите, пользоваться AWE несложно. А теперь хочу обратить Ваше внимание на несколько интересных моментов, связанных с этим фрагментом кода.
Вызов VirtualAlloc резервирует адресное окно размером 1 Мб. Обычно адресное окно гораздо больше. Бы должны выбрать его размер в соответствии с объемом бло ков оперативной памяти, необходимых Вашему приложению. Но, конечно, размер такого окна ограничен размером самого крупного свободного (и непрерывного) блока в адресном пространстве процесса. Флаг MEM_RESERVE указывает, что я про сто резервирую диапазон адресов, а флаг MEM_PHYSICAL — что в конечном счете этот диапазон адресов будет связан с физической (оперативной) памнтью. Механизм AWE требует, чтобы вся намять, связываемая с адресным окном, была доступна для чтения и записи; поэтому в данном случае функции VirtualAlloc можно передать только один атрибут защиты — PAGE_READWRITE, Кроме того, нельзя пользоваться функцией VirtualProtect и пытаться изменять тип защиты этого блока памяти.
Для выделения блока в физической памяти надо вызвать функцию AllocateUser PhysicalPages:
BOOL AllocateUserPhysicalPages( HANDLE hProcess, PULONG_PTR pulRAMPages, PULONG_PTR aRAMPages);
Она выделяет количество страниц оперативной памяти, заданное в значении, на которое указывает параметр pulRAMPages, и закрепляет эти страницы за процессом, определяемым параметром hProcess
Операционная система назначает каждой странице оперативной памяти номер фрейма страницы (page frame number) По мсре того как система отбирает страни цы памяти, выделяемые приложению, она вносит соответствующие данные (номер фрейма страницы для каждой страницы оперативной памяти) в массив, на который указывает параметр dRAMPages. Сами по себе эти номера для приложения совершен но бесполезны; Вам не следует просматривать содержимое этого массива и тем бо
лее что-либо менять в нем. Вы не узнаете, какие страницы оперативной памяти будут выделены под запрошенный блок, да это и не нужно. Когда эти страницы связывают ся с адресным окном, они появляются в виде непрерывного блока памяти, А что там система делает для этого, Вас не должно интересовать
Когда fyyHKiwnAllocateUserPbystcalPages возвращает управление, значение в pulRAM Pages сообгцает количество фактически выделенных страниц. Обычно оно совпадает с тем, что Вы передаете функции, но может оказаться и поменьше.
Страницы оперативной памяти выделяются только процессу, из которого была вызвана данная функция; AWE не разрешает проецировать их на адресное простран ство другого процесса. Поэтому такие блоки памяти нельзя разделять между процес сами.
NOTE:
Конечно, оперативная память — ресурс драгоценный, и приложение может выделить лишь ее незадействованную часть. Не злоупотребляйте механизмом AWE: если Ваш процесс захватит слишком много оперативной памяти, это может привести к интенсивной перекачке страниц на диск и резкому падению производительности вссй системы. Кроме того, это ограничит возможности системы в создании новых процессов, потоков и других ресурсов (Монито ринг степени использования физической памяти можно реализовать через функцию
GlobalMemoryStatusEx)
AllocateUserPhysicalPages требует также, чтобы приложению была разреше на блокировка страниц в памяти (т. e. у пользователя должно быть право «Lock Pages in Memory»), a иначе функция потерпит неудачу. По умолчанию таким правом пользователи или их группы не наделяются. Оно назначается учетной записи Local System, которая обычно используется различными службами. Если Вы хотите запускать интерактивное приложение, вызывающее AttocateUser PhysicalPages, администратор должен предоставить Вам соответствующее пра во еще до того, как Вы зарегистрируетесь в системе.
Теперь, создав адресное окно и выделив блок памяти, я связываю этот блок с ок ном вызовом функции MapUserPhysicalPages:
BOOL MapUserPhysicalPages( PVOID pvAddressWindow, ULONG_PTR ulRAMPages, PULONG_PTR aRAMPages);
Ее первый параметр, pvAddressWindow, определяет виртуальный адрес адресного окна, а последние два параметра, ulRAMPages и aRAMPages, сообщают, сколько стра ниц оперативной памяти должно быть видимо через адресное окно и что это за стра ницы. Если окно меньше связываемого блока памяти, функция потерпит неудачу.
NOTE:
Функция MapUserPhysicalPages отключает текущий блок оперативной памяти от адресного окна, если вместо параметра aRAMPages передается NULL. Вот пример:
// отключаем текущий блок RAM от адресного окна
MapUserPhysicalPayes(pvWindow, ulRAMPapes, NULL);
WINDOWS 2000
Связав блок оперативной памяти с адресным окном, Бы можете легко обра щаться к этой памяти, просто ссылаясь на виртуальные адреса относительно базового адреса адресного окна (в моем примере эти pvWindow)
Когда необходимость в блоке памяти отпадет, освободите его вызовом функции
FreeUserPhysicalPages:
BOOL FreeUserPhysicalPages( HANDLE hProcess, PULONG_PTR pulRAMPages, PULONG_PTR aRAMPages);
ВWindows 2000 право «Lock Pages in Memory" активизируется так:
1.Запустите консоль Computer Management MMC. Для этого щелкните кнопку Start, выберите команду Run, введите "compmgmt.msc /а" и щелкните кнопку ОК.
2.Если в левой секции нет элемента Local Computer Policy, выберите из меню Console
команду Add/Remove Snap-in. На вкладке Standalone в списке Snap-ins Added То укажите строку Computer Management (Local). Теперь щелкните кноп ку Add, чтобы открыть диалоговое окно Add Standalone Snap-in, B списке Avai lable Standalone Snap-ins укажите Select Group Policy и выберите кнопку Add. В
диалоговом окне Select Group Policy Objcct просто щелкните кнопку Finish. Наконец, в диалоговом окне Add Standalone Snap-in щелкните кнопку Close, a и диалоговом окне Add/Remove Snap-in — кнопку OK После этого в левой сек ции консоли Computer Management должен появиться элемент Local Computer Policy.
3.В левой секции консоли последовательно раскройте следующие элементы: Local Computer Policy, Computer Configuration, Windows Settings, Security Settings и Local Policies. Выберите User Rights Assignment.
4.В правой секции выберите атрибут Lock Pages in Memory.
5.Выберите из меню Action команду Select Security, чтобы открыть диалоговое окно
Lock Pages in Memory. Щелкните кнопку Add. В диалоговом окне Sclect Users or Groups добавьте пользователей и/или группы, которым Вы хотите раз решить блокировку страниц в памяти. Затем закройте все диалоговые окна, щелкая в каждом из них кнопку ОК.
Новые права вступят в силу при следующей регистрации в системе. Если Вы только что сами себе предоставили право «Lock Pages in Memory», выйдите из системы и вновь зарегистрируйтесь в ней.
Ее первый параметр, bProcess, идентифицирует процесс, владеющий данными страницами памяти, а последние два параметра сообщают, сколько страниц опера тивной памяти следует освободить и что это за страницы. Если освобождаемый блок в данный момент связан с адресным окном, он сначала отключается от этого окна