
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch

Элемент |
Описание |
|
|
dwOemld |
Устарел, больше не используется |
wReserved |
Зарезервирован на будущее; пока не используется |
|
|
dwNumberOfProcessors |
Число процессоров в компьютере |
|
|
dwActiveProcessorMask |
Битовая маска, которая сообщает, какие процессоры активны (выполняют потоки) |
|
|
dwProcessorType |
Используется только в Windows 98; сообщает тип процессора, например Intel 386, 486 или |
|
Pentium |
wProcessorArchitecture |
Используется только в Windows 2000; сообщает тип архитектуры процессора, например Intel, |
|
Alpha, 64-разрядный Intel или 64-разрядный Alpha |
|
|
wProcessorLevel |
Используется только в Windows 2000; сообщает дополнительные подробности об архитектуре |
|
процессора, например Intel Pentium Pro или Pentium II |
|
|
wProcessorRevision |
Используется только в Windows 2000; сообщает дополнительные подробности об уровне данной |
|
архитектуры процессора |
|
|
Программа-пример Syslnfo
Эта программа, «14 SysInfo.exe» (см. листинг на рис. 14-1), весьма проста; она вызыва ет функцию GetSystemInfo и выводит на экран информацию, возвращенную в струк туре SYSTEM_INFO. Файлы исходного кода и ресурсов этой программы находятся в каталоге 14-SysInfo на компакт-диске, прилагаемом к книге Диалоговые окна с ре зультатами выполнения программы SysInfo на разных процессорных платформах показаны ниже.
Windows 98 на процессоре x86 32-разрядная Windows 2000 на процессоре x86
32-разрядная Windows2000 64 разрядная Windows 2000 на процессореА1рhа на процессоре Alpha
Статус виртуальной памяти
Windows-функция GlobalMemoryStatus позволяет отслеживать текущее состояние па мяти
VOID GlobalMemoryStatus(LPMEMORYSTATUS pmst);
На мой взгляд, она названа крайне неудачно, имя GlobalMemorySlatus подразуме вает, что функция каким-то образом связана с глобальными кучами в 16-разрядной Windows Мне кажется, что лучше было бы назвать функцию GlobalMemoryStatus по другому — скажем,
VirtualMemoryStatus.
При вызове функции GlobaUdemoryStatus Вы должны передать адрес структуры MEMORYSTATUS. Вот эта структура:
typedef struct _MEMORYSTATUS
{
DWORD dwLength;
DWORD dwMemoryLoad;
SIZE_T dwTotalPhys;
SIZE_T dwAvailPhys;
SIZE_T dwTotalPageFile;
SIZE_T dwAvailPageFile;
SIZE_T dwTotalVirtual;
SIZE_T dwAvailVirtual;
} MEMORYSTATUS, *LPMEMORYSTATUS;
Перед вызовом GlobalMemoryStatus надо записать в элемент dwLength размер струк туры в байтах. Такой принцип вызова функции дает возможность Microsoft расширять эту структуру в будущих версиях Windows, не нарушая работу существующих прило жений После вызова GlobalMemoryStatus инициализирует остальные элементы струк туры и возвращает управление. Назначение элементов этой структуры Вы узнаете из следующего раздела, в котором рассматривается программа-пример VMStat.
Если Вы полагаете, что Ваше приложение будет работать на машинах с объемом оперативной памяти более 4 Гб или файлом подкачки более 4 Гб, используйте новую функцию GlobalMemoryStatusEx:
BOOL GlobalHemoryStatusEx(LPMEHORYSTATUSEX pmst);
Вы должны передать ей адрес новой структуры MEMORYSTATUSEX:
typedef struct _MEMORYSTATUSEX
{
DWORD dwLength;
DWORD dwMemoryLoad;
DWORDLONG ullTotalPhys;
DWORDLONG ullAvailPhys;
DWORDLONG ullTotalPageFile;
DWORDLONG ullAvaiIPageFile;
DWORDLONG ullTotalVirtual;
DWORDLONfi uUAvailVirtual;
DWOHDLONG ullAvailExtendedVirtual;
} MEMORYSTATUSEX, *LPMEMORYSTATUSEX;
Эта структура идентична первоначальной структуре MEMORYSTATUS с одним ис ключением все ее элементы имеют размер по 64 бита, что позволяет оперировать со значениями, превышающими 4 Гб. Последний элемент, ullAvailExtendedVirtual, указы вает

размер незарезервированной памяти в самой большой области памячи виртуаль ного адресного пространства вызывающего процесса. Этот элемент имеет смысл толь ко для процессоров определенных архитектур при определенных конфигурациях,
Программа-пример VMStat
Эта программа, «14 VMStat.exe» (см. листинг на рис. 14-2), выводит на экран окно с результатами вызова GlobalMemoryStatus Информация в окне обновляется каждую
секунду, так что VMStat вполне пригодна для мониторинга памяти в системе. Файлы
исходного кода и ресурсов этой программы находятся в каталоге 14-VMStat на ком пактдиске, прилагаемом к книге. Окно этой программы после запуска в Windows 2000 на машине с процессором Intel Pentium II и 128 Мб оперативной памяти показано ниже.
Элемент dwMemoryLoad (показываемый как Memory Load) позволяет оценить, на сколько занята подсистема управления памятью. Это число может быть любым в ди апазоне от 0 до 100 В Windows 98 и Windows 2000 алгоритмы, используемые для его подсчета, различны. Кроме того, в будущих версиях операционных систем этот алго ритм почти наверняка придется модифицировать. Но, честно говоря, на практике от значения этого элемента толку немного
Элемент dwTotalPhys (показываемый как TotalPhys) отражает общий объем физи ческой (оперативной) памяти в байтах. На данной машине с Pentium II и 128 Мб опе ративной памяти его значение составляет 133 677 056, что на 540 672 байта меньше 128 Мб. Причина, по которой GlobalMemoryStatus не сообщает о полных 128 Мб, кро ется в том, что система при загрузке резервирует небольшой участок оперативной памяти, недоступный даже ядру. Этот участок никогда не сбрасывается на диск А эле мент dwAvailPhys (показываемый как AvailPhys) дает число байтов свободной физи ческой памяти.
Элемент dwTotalPageFile (показываемый как TotalPagcFile) сообщает максимальное количество байтов, которое может содержаться в страничном файле (файлах) на жестком диске (дисках). Хотя VMStat показывает, что текущий размер страничного файла составляет 318 574 592 байта, система может варьировать его по своему усмот рению Элемент dwAvailPageFile (покапываемый как AvailPageFile) подсказывает, что в данный момент 233 046 0l6 байтов в страничном файле свободно и может быть пе редано любому процессу.
Элемент dwTotalVirtual (показываемый как TotalVirtual) отражает общее количе ство байтов, отведенных под закрытое адресное пространство процесса. Значение 2 147 352 576 ровно на 128 Кб меньше 2 Гб. Два раздела недоступного адресного про странства — от
0x00000000 до 0x0000FFFF и от 0x7FFF0000 до 0x7FFFFFFF — как раз и составляют эту разницу в 128 Кб. Запустив VMStat в Windows 98, Вы увидите, что значение этого