
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
просто вызовите QueueUserWorkltem с флагом WT_EXECUTEINIOTHREAD и передайте нужные данные (наверное, как минимум, структуру OVERLAPPED) Ничего другого функции пула Вам и не предложили бы.
ГЛАВА 12 Волокна
Microsoft добавила в Windows поддержку волокон (fibers), чтобы упростить порти рование (перенос) существующих серверных приложений из UNIX в Windows C точ ки зрения терминологии, принятой BWindows, такие серверные приложения следует считать однопоточпыми, но способными обслуживать множество клиентов. Иначе говоря, разработчики UNIX-приложений создали свою библиотскудля организации многопоючности и с ее помощью эмулируют истинные потоки. Она создает набор стеков, сохраняет определенные регистры процессора и переключает контексты при обслуживании клиентских запросов.
Разумеется, чтобы добиться большей производительности от таких UNIX-прило жений, их следует перепроектировать, заменив библиотеку, эмулирующую потоки, на настоящие потоки, используемые в Windows. Ho переработка может занять несколь ко месяцев, и поэтому компании сначала просто переносят существующий UNIX-код в Windows — это позволяет быстро предложить новый продук на рынке Windows приложений.
Но при переносе UNIX-программ в Windows могут возникнуть проблемы В част ности, механизм управления стеком потока в Windows куда сложнее простого выде ления памяти. В Windows стеки начинают работать, располагая сравнительно малым объемом физической памяти, и растут по мере необходимости (об этом я расскажу в разделе «Стек потока» главы l6). Перенос усложняется и наличием механизма струк турной обработки исключений (см. главы 23, 24 и 25).
Стремясь помочь быстрее (и с меньшим числом ошибок) переносить UNIX-код в Windows, Microsoft добавила в операционную систему механизм поддержки волокон. В этой главе мы рассмотрим концепцию волокон и функции, предназначенные для операций с ними. Кроме того, я покажу, как эффективнее работать с такими функци ями. Но, конечно, при разработке новых приложений следует использовать настоя щие потоки
Работа с волокнами
Во-первых, потоки в Windows реализуются на уровне ядра операционной системы, которое отлично осведомлено об их существовании и "коммутирует» их в соответ ствии с созданным Microsoft алгоритмом В то жс время волокня реализованы на уров не кода пользовательского режима, ядро ничего не знает о них, и процессорное вре мя распределяется между волокнами по алгоритму, определяемому Вами. А раз так, то о вытеснении волокон говорить не приходится — по крайней мере, когда дело каса ется ядра
Второе, о чем следует помнить, — в потоке может быть одно или несколько воло кон. Для ядра поток — все то, что можно вытеснить и что выполняет код. Единовре менно поток будет выполнять код лишь одного волокна — какого, решать Вам (соот ветствующие концепции я поясню позже).

Приступая к работе с волокнами, прежде всего преобразуйте существующий по ток в волокно. Эчо делает функция ConvertThreadToFiber
PVOID ConvertThreadToFiber(PVOID pvParam);
Она создает в памяти контекст волокна (размером около 200 байтов). С него вхо дят следующие элементы:
определенное программистом значение; оно получает значение параметра pvParam, передаваемого в ConvertThreadToFiber,
заголовок цепочки структурной обработки исключений, начальный и конечный адреса стека волокна; при преобразовании потока в волокно он служит и стеким потока;
В регистры процессора, включая указатели стека и команд.
Создав и инициализировав контекст волокна, Вы сопоставляете его адрес с пото ком, преобразованным в волокно, и теперь оно выполняется в этом потоке Convert ThreadToFiber возвращает адрес, по которому расположен контекст волокна. Этот ад pcc сщe понадобится Вам, но ни считывать, ни записывать по нему напрямую ни в коем случае нельзя — с содержимым этой структуры работают только функции, уп равляющие волокнами При вызове ExitThread завершаются и волокно, и поток
Нет смысла преобразовывать поток в волокно, если Вы не собираетесь создавать дополнительные волокна в том же потоке Чтобы создать другое волокно, поток (вы полняющий в данный момент волокно), вызывает функцию CreateFiber:
PVOID CreateFiber( DWORD dwStackSize, PFIBER_START_ROUTINE pfnStartArtrtress, PVOID pvParam);
Сначала она пытается создать новый стек, размер которого задан в параметре dwStackSize. Обычно передают 0, и тогда максимальный размер стека ограничивается 1 Мб, а изначально ему передается две страницы памяти. Если Вы укажече ненулевое значение, то для стека будет зарезервирован и передан именно такой объем памяти.
Создав стек, CrealeFiber формирует новую структуру контекста волокна и иници ализирует ее. При этом первый ее элемент получает значение, переданное функции как параметр pvParam, сохраняются начальный и конечный адреса стека, а также адрес функции волокна (переданный как аргумет pfnStartAddress)
У функции волокна, реализуемой Вами, должен бьпь такой прототип;
VOID WINAPI FiberFunc(PVOID pvParam);
Она выполняется, когда волокно впервые получает управление В качестве пара метра ей передается значение, изначально переданное как аргумент pvParam функ ции CreateFtber Внутри функции волокна можно делать что угодно. Обратите внима ние на тип возвращаемого значения — VOID Причина не в том, что это значение несущественно, а в том, чго функция никогда не возвращает управление! А иначе поток и все созданные внутри него волокна были бы тут же уничтожены.
Как и ConvertThreadToFiber, CreateFiber возвращает адрес контекста волокна, но с тем отличием, что новое волокно начинает работать не сразу, поскольку продолжа ется
выполнение текущего. Единовременно поток может выполнять лишь одно волок но. И, чтобы новое волокно стало работать, надо вызвать SwitchToFiber
VOID SwitchToFiber(PVOID pvFiberExeculionContext);
Эта функция принимает единственный параметр (pvFiberExecutionContext) — ад рес контекста волокна, полученный в предшествующем вызове ConvertThreadToFiber или CreateFiber По этому адресу она определяет, какому волокну предоставить про цессорное время SwitchToFiber осуществляет такие операции
1.Сохраняет в контексте выполняемого в данный момент волокна ряд текущих регистров процессора, включая указатели команд и стека
2.Загружает в регистры процессора значения, ранее сохраненные в контексте волокна, подлежащею выполнению В их число входит указатель стска, и по этому при переключении на другое волокно используется именно его стек
3.Связывает контекст волокна с потоком, и тот выполняет указанное волокно
4.Восстанавливает указатель команд Поток (волокно) продолжает выполнение с того места, на каком волокно было прервано в последний раз
Применение SwitchToFiber — единственный способ выделить волокну процессор ное время Поскольку Ваш код должен явно вызывать эту функцию в нужные момен ты, Вы полностью управляете распределением процессорного времени для волокон Помните такой вид планирования не имеет ничего общего с планированием пото ков Поток, в рамках которого выполняются волокна, всегда может быть вытеснен операционной системой Когда поток получает процессорное время, выполняется только выбранное волокно, и никакое другое не получит управление, пока Вы сами не вьповете
SwitchToFiber
Для уничтожения волокна предназначена функция DeleteFiber
VOID DeleteFiber(PVOID pvFiberExecutionContext);
Она удаляет волокно, чей адрес контекста определяется параметром pvFtberExecu tionContext, освобождает память, занятую стеком волокна, и уничтожает его контекст Но, если Вы передаете адрес волокна, связанного в данный момент с потоком, Delete Fiber сама вызывает ExitThread — в результате поток и все созданные в нем волокна «погибают»
DeleteFiber обычно вызывается волокном, чтобы удалить другое волокно Стек уда ляемого волокна уничтожается, а его контекст освобождается И здесь обратите вни мание на разницу между волокнами и потоками потоки, как правило, уничтожают себя сами, обращаясь к ExitThread Использование с этой целью TerminateThread счи тается плохим тоном — ведь тогда система не уничтожает стек потока Так вот, спо собность волокна корректно уничтожать другие волокна нам еще пригодится — как именно, я расскажу, когда мы дойдем до программы-примера
Для удобства предусмотрено еще две функции, управляющие волокнами В каж дый момент потоком выполняется лишь одно волокно, и операционная система все гда знает, какое волокно связано сейчас с потоком Чтобы получить адрес контекста текущего волокна, вызовите GetCurrentFiber
PVOID GetCurrentFiber();

Другая полезная функция — GetFiberData
PVOID GetFiberData();
Как я уже говорил, контекст каждого волокна содержит определяемое програм мистом значение Оно инициализируется знячением параметра pvParam, передавае мого функции ConvertThreadToFiber или CreateFiber, и служит аргументом функции во локна GetFtberData просто «заглядывает» в контекст текущего волокна и возвращает хранящееся там значение
Обе функции — GetCurrentFiber и GetFiberData — работают очень быстро и обыч но реализуются компилятором как встраиваемые (т e. вместо вызовов этих функций он подставляет их код)
Программа-пример Counter
Эта программа, «12 Counter.exe» (см. листинг на рис 12-1), демонстрирует примснс нис волокон для реализации фоновой обработки. Запустив се, Вы увидите диалого вое окно, показанное ниже (Настоятельно советую запустить программу Counter, тогда Вам будет легче понять, что происходит в ней и как она себя ведет)
Считайте эту программу свсрхминиатюрной электронной таблицей, состоящей всего из двух ячеек. В первую из них можно записывать — она реализована как поле, расположенное за меткой Count To. Вторая ячейка доступна только для чтения и ре ализована как статический элемент управления, размещенный за меткой Answer Из менив число в поле, Вы заставите программу пересчитать значение в ячейке Answer. В этом простом примере пересчет заключается в том, что счетчик, начальное значе ние которого равно 0, постепенно увеличивается до максимума, заданного в ячейке Count То. Для наглядности статический элемент управления, расположенный в ниж ней части диалогового окна, показывает, какое из волокон — пользовательского ин терфейса или расчетное — выполняется в данный момент
Чтобы протестировать программу, введите в поле число 5 — строка Currently Running Fiber будет заменена строкой Recalculation, а значение в поле Answer посте пенно возрастет с 0 до 5. Когда пересчет закончится, текущим волокном вновь станет интерфейсное, а поток заснет Теперь введите число 50 и вновь понаблюдайте за пе ресчегом — на этот paз перемещяя окно по экрану. При этом Вы заметите, что рас четное волокно вытесняется, а интерфейсное вновь получает процессорное время, благодаря чему программа продолжает реагировать на действия пользователя. Оставь те окно в покое, и Вы увидите, что расчетное волокно снова получило управление и возобновило работу с того значения, на котором было прервано
Остается проверить лишь одно. Давайте изменим число в поле ввода в момент пересчета Заметьте: интерфейс отреагировал на Ваши действия, но после ввода дан ных пересчет начинается заново. Таким образом, программа ведет себя как настоя щая электронная таблица.

Обратите внимание и на то, что в программе не задействованы ни критические секции, ни другие объекты, синхронизирующие потоки, — все сделано на основе двух волокон в одном потоке
Теперь обсудим внутреннюю реализацию программы Counter Когда первичный поток процесса приступает к выполнению _tWinMain, вызывается функция Convert ThreadToFiber, преобразующая поток в волокно, которое впоследствии позволит нам создать другое волокно. Затем мы создаем немодальнос диалоговое окно, выступаю щее в роли главного окна программы. Далее инициализируем переменную — инди катор состояния фоновой обработки (background processing stale, BPS) Она реализо вана как элемент bps в глобальной переменной g_FiberInfo Ее возможные состояния описываются в следующей таблице.
Состояние Описание
BPS_DONE Пересчет завершен, пользователь ничего не изменял, новый пересчет не нужен
BPS_STARTOVER Пользователь внес изменения, требуется пересчет с самою начала
BPS_CONTINUE Пересчет еще продолжается, пользователь ничего не изменил, пере счет заново не нужен
Индикатор bps проверяется внутри цикла обработки сообщений потока, который здесь сложнее обычного. Вот что делает этот цикл.
Если поступает оконное сообщение (активен пользовательский интерфейс), обрабатываем именно его. Своевременная обработка действий пользователя всегда приоритетнее пересчета.
Если пользовательский интерфейс простаивает, проверяем, не нужен ли пе ресчет (т. e. не присвоено ли переменной bfs значение BPS_STARTOVER или
BPS_CONTINUE).
Если вычисления нс нужны (BPS_DONE), приостанавливаем поток, вызывая WaitMessage, — только событие, связанное с пользовательским интерфейсом, может потребовать пересчета.
Если интерфейсному волокну делать нечего, а пользователь только что изменил значение в поле ввода, начинаем вычисления заново (BPS_STARTOVER). Главное, о чем здесь надо помнить, — волокно, отвечающее за пересчет, может уже работать. Тогда это волокно следует удалить и создать новое, которое начнет все с начала. Чтобы уничтожить выполняющее пересчет волокно, интерфейсное вызывает DeleteFiber. Именно этим и удобны волокна. Удаление волокна, занятого пересчетом, — операция вполне допустимая, стек волокна и его контекст корректно уничтожаются Если бы мы использовали потоки, а не волокна, интерфейсный поток не смог бы корректно уничтожить поток, занятый пересчетом, — нам пришлось бы задействовать какой нибудь механизм межпоточного взаимодействия и ждать, пока поток пересчета не завершится сам. Зная, что волокна, отвечающего за пересчет, больше нет, мы впра ве создать новое волокно для тех же целей, присвоив переменной bps значение BPS_CONTINUE.
Когда пользовательский интерфейс простаивает, а волокно пересчета чем-то за нято, мы выделяем ему процессорное время, вызывая SwitchToFiber, Последняя не вер пет управление, пока волокно пересчета тоже не обратится к SwitchToFiber, передав ей адрес контекста интерфейсного волокна.