
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
для применения в многопоточной среде, создав для собственных типов данных оболочку из С++-класса Используя такие классы, я попутно представлю объ ект, ведущий себя прямо противоположно семафору.
Потом мы рассмотрим одну из типичных задач программирования что делать, когда считывает какой-то ресурс несколько потоков, а записывает в него — только один. В Windows нет подходящего на этот случай синхронизирующего объекта, и я написал специальный С++-класс.
Наконец, я продемонстрирую свою функцию WaitForMultipleExpressions. Работая по аналогии с WaitForMultipleObjects, заставляющей ждать освобождения одного или всех объектов, она позволяет указывать более сложные условия пробуждения потока.
Реализация критической секции: объект-оптекс
Критические секции всегда интересовали меня. В конце концов, ссли это всего лишь объекты пользовательского режима, то почему бы мне не реализовать их самому? Разве нельзя заставить их работать бсз поддержки операционной системы? Кроме того, написав собственную критическую секцию, я мог бы расширить ее функциональ ность и в чем-то даже усовершенствовать. По крайней мере я сделал бы так, чтобы она отслеживала, какой поток захватывает защищаемый ею ресурс. Такая реализация критической секции помогла бы мне устранять проблемы с взаимной блокировкой потоков с помощью отладчика я узнавал бы, какой из них не освободил тот или иной ресурс.
Так что давайте без лишних разговоров перейдем к тому, как реализуются крити ческие секции. Я все время утверждаю, что они являются объектами пользовательс кого режима Нз самом дслс это не совсем так. Любой поток, который пытается вой ти в критическую секцию, уже захваченную другим потоком, переводится в состоя ние ожидания. А для этого он должен перейти из пользовательского режима в режим ядра. Поток пользовательского режима может остановиться, просто войдя в цикл ожидания, но это вряд ли можно назвать эффективной реализацией ждущего режи ма, и поэтому Вы должны всячески избегать ее.
Значит, в критических секциях есть какой-то объект ядра, умеющий переводить поток в эффективный ждущий режим. Критическая секция обладает высоким быст родействием, потому что этот объект ядра используется только при конкуренции потоков за вход в критическую секцию. И он не задействован, пока потоку удастся немедленно захватывать защищаемый ресурс, работать с ним и освобождать его без конкуренции со стороны других потоков, так как выходить из пользовательского режима потоку в этом случае не требуется. В большинстве приложений конкуренция двух (или более) потоков за одновременный вход в критическую секцию наблюдает ся нечасто.
Мой вариант критической секции содержится в файлах Optex.h и Optex.cpp (см, листинг на рис. 10-1). Я назвал cc оптимизированным мъютексом — оптексом и реализовал в виде С++-класса. Разобравшись в этом коде, Вы поймете, почему крити ческие секции работают быстрее объектов ядра «мьютекс».
Поскольку я создавал собственную критическую секцию, у меня была возможность расширить ее функциональность. Например, мой класс COpcex позволяет синхрони зировать потоки из разных процессов. Это фантастически полезная особенность моей реализации: Вы получаете высокоэффективный механизм взаимодействия между по токами из разных процессов

Чтобы использовать мой оптекс, Вы просто объявляете объект класса COptex. Для этого объекта предусмотрено три конструктора;
COptex::(DWORD dwSpinCount = 4000);
COptex::(PCSTR pszNane, DWORD dwSpinCount = 4000);
COptex::(PCWSTR pszName, DWORD dwSpinCount = 4000);
Первый создает объект COptex, применимый для синхронизации потоков лишь одного процесса. Оптекс этого типа работает быстрее, чем межпроцессный. Осталь ные два конструктора создают оптекс, которым могут пользоваться потоки из разных процессов. В параметре pszName Вы должны передавать ANSIили Unicode-строку, уникально идентифицирующую каждый разделяемый оптекс. Чтобы процессы разде ляли один оптекс, они должны создать по экземпляру объекта COptex с одинаковым именем.
Поток входит в объект COptex и покидает его, вызывая методы Enter и Leave:
void COptex::Enter(); void COptex::Leave();
Я даже включил методы, эквивалентные функциям TryEnterCriticalSection и SetCriti calSectionSpinCount критических секций:
BOOL COptex::TryEnter();
void COptex::SetSpinCount(DWORD dwSpinCount);
Тип оптекса (одноили межпроцессный) позволяет выяснить последний метод класса COptex, показанный ниже. (Необходимость в его вызове возникает очень ред ко, но внутренние функции класса время от времени к нему обращаются.)
BOOL COptex::IsSingleProcessOptex() const;
Вот и все (открытые) функции, о которых Вам нужно знать, чтобы пользоваться оптексом. Теперь я объясню, как работает оптекс. Он — как, в сущности, и критичес кая секция — содержит несколько псрсменных-членов. Значения этих переменных отражают состояние оптекса. Просмотрев файл Optex.h, Вы увидите, что в основном они являются элементами структуры SHAREDINFO, а остальные — членами самого класса. Назначение каждой переменной описывается в следующей таблице.
Переменная |
Описание |
|
|
m_lLockCount |
Сообщает, сколько раз потоки пытались занять оптекс Ее значение равно 0, если оптекс не занят |
|
ни одним потоком. |
|
|
т dwThreadId |
Сообщает уникальный идентификатор потока — владельца оптекса Ее значение равно 0, если |
|
оптекс не занят ни одним потоком |
|
|
m_lRecurseCount |
Указывает, сколько раз отеке был занят потокомвладельцем. Ее зна чение равно 0, если оптекс |
|
не занят ни одним потоком. |
|
|
m_hevt |
Содержит описатель объекта ядра «событие", используемого, только если поток пытается войти в |
|
оптекс в то время, как им владеет другой поток. Описатели объектов ядра специфичны для |
|
конкретных процес сов, и имении поэтому данная переменная не включена в структуру |
|
SHAREDINFO. |
|
|
m_dwSpinCount |
Определяет, сколько попыток входа в оптекс должен предпринять по ток до перехода в состояние |
|
ожидания на объекте ядра «событие». На однопроцессорной машине значение этой переменной |
|
всегда равно 0. |
|
|

m_hfm |
Содержит описатель объекта ядра «проекция файла», используемого при разделении оптекса |
|
несколькими процессами Описатели объек тов ядра специфичны для конкретных процессов, и |
|
именно поэтому данная переменная не включена в структуру SHAREDINFO. В однопро цессном |
|
оптексе значение этой переменной всегда равно NULL |
|
|
m_psi |
Содержит указатель на элементы данных оптекса, которые могут ис пользоваться несколькими |
|
процессами. Адреса памяти специфичны для конкретных процессов, и именно поэтому данная |
|
переменная не включена в структуру SHAREDINFO. В однопроцессном оптексе эта пе ременная |
|
указывает ни блок памяти, выделенный из кучи, а в межпро цессном — на файл, |
|
спроецированный в память. |
|
|
Комментариев в исходном коде вполне достаточно, и у Вас не должно возникнуть трудностей в понимании того, как работает оптекс. Важно лишь отметить, что высо кое быстродействие оптекса достигается за счет интенсивного использования lnterlo ced- функций. Благодаря им код выполняется в пользовательском режиме и перехо дит в режим ядра только в том случае, когда это действительно необходимо.
Программа-пример Optex
Эта программа, «10 Optex.exe» (см.листинг на рис, 10-1), предназначенадля провер ки того, что класс COptex работает корректно. Файлы исходного кода и ресурсов этой программы находятся в каталоге 10-Optex на компакт-диске, прилагаемом к книге. Я всегда запускаю такие приложения под управлением отладчика, чтобы наблюдать за всеми функциями и переменными — членами классов,
При запуске программа сначала определяет, является ли она первым экземпляром. Для этого я создаю именованный объект ядра «событие». Реально я им не пользуюсь, а просто смотрю, вернет ли GetLastError значение ERROR_ALREADY_EXISTS. Если да, значит, это второй экземпляр программы. Зачем мнс два экземпляра этой програм мы, я объясню позже.
Если же это первый экземпляр, я создаю однопроцессный объект COptex и вызы ваю свою функцию FirstFunc. Она выполняет серию операций с объектом-оптексом и создает второй поток, который манипулирует тем же оптексом. На этом этапе с оптексом работают два потока из одного процесса. Что именно они делают, Вы узна ете, просмотрев исходный код. Я пытался охватить все мыслимые сценарии, чтобы дать шанс на выполнение каждому блоку кода в классе COptex
После тестирования однопроцессного оптекса я начинаю проверку межпроцесс ного оптекса. В функции _tWinMain по завершении первого вызова FirstFunc я создаю
другой объект-оптекс COptex. Но на этот раз я присваиваю ему имя — CrossOptexTest. Простое присвоение оптексу имени в момент создания превращает этот объект в межпроцессный. Далее я снова вызываю FirstFunc, передавая сй адрес межпроцессно го оптекса При этом FirstFunc выполняет в основном тот же код, что и раньше. Но теперь она порождает не второй поток, а дочерний процесс.
Этот дочерний процесс представляет собой всего лишь второй экземпляр той же программы. Однако, создав при запуске объектядра «событие", она обнаруживает, что такой объект уже существует. Тем самым она узнает, что является вторым экземпля ром, и выполняет другой код (отличный от того, который выполняется первым эк земпляром). Первое, что делает второй экземпляр, — вызывает DebugBreak:
VOID DebugBreak();