
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
Критические секции и обработка ошибок
Вероятность того, что lnitializeCriticalSection потерпит неудачу, крайне мала, но все же существует. В свое время Microsoft не учла этого при разработке функции и опреде лила ее возвращаемое значение как VOID, т. e. она ничего не возвращает. Однако функция может потерпеть неудачу, так как выделяет блок памяти для внутрисистем ной отладочной информации. Если выделить память не удается, генерируется исклю чение STATUS_NO_MEMORY. Вы можете перехватить его, используя структурную об работку исключений (см. главы 23, 24 и 25).
Есть и другой, более простой способ решить эту проблему — перейти на новую функцию
InitializeCriticalSectionAndSpinCount. Она, тоже выделяя блок памяти для от ладочной информации, возвращает FALSE, если выделить память не удается.
В работе с критическими секциями может возникнуть ещс одна проблема. Когда за доступ к критической секции конкурирует два и более потоков, она использует объект ядра "событие" (Я покажу, как работать с этим объектом при описании C++ класса COptex в главе 10.) Поскольку такая конкуренция маловероятна, система не создает объект ядра «событие" до тех пор, пока он действительно не потребуется. Это экономит массу системных ресурсов — в большинстве критических секций конкурен ция потоков никогда не возникает.
Но если потоки все же будут конкурировать за критическую секцию в условиях нехватки памяти, система не сможет создать нужный объект ядра И тогда Enter CriticalSection возбудит исключение EXCEPTION_INVALID_HANDLE. Большинство раз работчиков просто игнорирует вероятность такой ошибки и не предусматривает для нее никакой обработки, поскольку она случается действительно очень редко Но если Вы хотите заранее подготовиться к такой ситуации, у Вас есть две возможности.v
Первая — использовать структурную обработку исключений и перехватывать ошибку. При этом Вы либо отказываетесь от обращения к ресурсу, защищенному кри тической секцией, либо дожидаетесь появления свободной памяти, а затем повторя ете вызов
EnterCriticalSection.
Вторая возможность заключается в том, что Вы создаете критическую секцию вызовом
InitializeCriticalSectionAndSpinCount, передавая параметр dwSpinGount с уста
новленным старшим битом Тогда функция создает объект «событие" и сопоставляет его с критической секцией. Если создать объект не удается, она возвращает FALSE, и это позволяет корректнее обрабатывать такие ситуации. Но успешно созданный объ ект ядра «событие" гарантирует Вам, что EnterCriticalSection выполнит свою задачу при любых обстоятельствах и никогда не вызовет исключение. (Всегда выделяя память под объекты ядра «событие», Вы неэкономно расходуете системные ресурсы. Поэтому делать так следует лишь в нескольких случаях, а именно: если программа может рух нуть из-за неудачного завершения функции EnterCriticatlSection, если Вы уверены в конкуренции потоков при обращении к критической секции или если программа будет работать в условиях нехватки памяти.)
Несколько полезных приемов
Используя критические секции, желательно привыкнуть делать одни вещи и избегать других. Вот несколько полезных приемов, которые пригодятся Вам в работе с крити ческими секциями. (Они применимы и к синхронизации потоков с помощью объек тов ядра, о которой я расскажу в следующей главе )
На каждый разделяемый ресурс используйте отдельную структуру CRITICAL_SECTION
Если в Вашей программе имеется несколько независимых структур данных, создавайте для каждой из них отдельный экземпляр структуры CRITICAL_SECTION, Это лучше, чем защищать все разделяемые ресурсы одной критической секцией. Посмотрите на этот фрагмент кода:
int g_nNums[100]; // один разделяемый ресурс
TCHAR g_cChars[100]; // Другой разделяемый ресурс
CRITICAL_SECTION g_cs, // защищает оба ресурса
DWORD WINAPI ThreadFunc(PVOID pvParam) { EnterCriticalSection(&g_cs);
for (int x = 0; x < 100: x++)
{
g_nNums[x] = 0; g_cChars|x] - TEXT('X');
}
LeaveCriticalSection(&g_cs); return(0);
}
Здесь создана единственная критическая секция, защищающая оба массива — g_nNums и g_cChars — в период их инициализации. Но эти массивы совершенно раз личны. И при выполнении данного цикла ни один из потоков нс получит доступ ни к одному массиву. Теперь посмотрим, что будет, если ThreadFunc реализовать так:
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_cs); for (int x = 0; x < 100; x++)
g_nNums[x] = 0;
for (x = 0; x < 100; x++)
g_cChars[x] = TEXT('X'); LeaveCriticalSection(&g_cs); return(0);
}
В этом фрагменте массивы инициализируются по отдельности, и теоретически после инициализации g_nNums посторонний поток, которому нужен доступ только к первому массиву, сможет начать исполнение — пока ThreadFunc занимается вторым массивом. Увы, это невозможно: обе структуры данных защищены одной критичес кой секцией. Чтобы выйти из затруднения, создадим две критические секции:
int g_nNum[100]; // разделяемый ресурс
CRITICAL_SECTION g_csNums; // защищает g_nNums
TCHAR g_cChars[100]; // другой разделяемый ресурс
CRITICAL_SECTION g_csChars; // защищает g_cChars
DWORD WTNAPT ThreadFunc(PVOTD pvParam)
{
EnterCriticalSection(&g_csNums); for (int x = 0; x < 100; x++) g_nNums[x] = 0; LeaveCriticalSection(&g_csNums); EnterCriticalSection(&g_csChars); for (x = 0; x < 100; x++) g_cChars[x] = TEXT('X'); LeaveCriticalSection(&g_ csChars); return(0);
}
Теперь другой поток сможет работать с массивом g_nNums, как только ThreadFunc закончит его инициализацию. Можно сделать и так, чтобы один поток инициализи ровал массив g_nNums, я другой — gcChars.
Одновременный доступ к нескольким ресурсам
Иногда нужен одновременный доступ сразу к двум структурам данных. Тогда Thread Func следует реализовать так:
DWORD WINAPI ThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_csNums);
EnterCriticalSection(&g_csChars);
// в этом цикле нужен одновременный доступ к обоим ресурсам
for (int x = 0; x < 100; x++) g_nNums[x] = g_cChars[x];
LeaveCriticalSection(&g_csChars);
LeaveCrilicalSection(&g_csNums};
return(0);
}
Предположим, доступ к обоим массивам требуется и другому потоку в данном процессе; при этом его функция написана следующим образом:
DWORD WINAPI OtherThreadFunc(PVOID pvParam)
{
EnterCriticalSection(&g_csChars);
EnterCriticalSection(&g_csNums);
for (int x = 0; x < 100; x++) g_nNums[x] = g_cChars[x]; LeaveCriticalSection(&g_csNums); LeaveCriticalSection(&g_csChars); return(0);
}
Я лишь поменял порядок вызовов EnterCriticalSection и LeaveCriticalSection, Но из за того,
что функции ThreadFunc и OtherThreadFunc написаны именно так, существу
ет вероятность взаимной блокировки (deadlock) Допустим, ThreadFunc начинает ис полнение и занимает критическую секцию g_csNums Получив от системы процессор ное время, поток с функцией OtherThreadFunc захватывает критическую секцию g_csChars Тут-то и происходит взаимная блокировка потоков Какая бы из функций — ThreadFunc или OtherThreadFunc — ни пыталась продолжить исполнение, она не су меет занять другую, необходимую ей критическую секцию
Эту ситуацию легко исправить, написав код обеих функций так, чтобы они вызы вали EnterCriticalSection в одинаковом порядке Заметьте, что порядок вызовов Leave CrititalSection несуществен, поскольку эта функция никогда не приостанавливает поток
Не занимайте критические секции надолго
Надолго занимая критическую секцию, Ваше приложение может блокировать другие потоки, что отрицательно скажется на его общей производительности Вот прием, позволяющий свести к минимуму время пребывания в критической секции Гледую щий код нс даст другому потоку изменять значение в g_s до тех пор, пока в окно не будет отправлено сообщение WM_SOMEMSG
SOMESTRUCT g, s;
CRITICAL_SECTION g_cs;
DWORD WINAPI SomeThread(PVOID pvParam)
{
EnterCriticalSection(&g_cs);
// посылаем в окно сообщение
SendMessage(hwndSomeWnd, WM_SOMEMSG, &g_s, 0); LeaveCriticalSection(&g_cs);
return(0);
}
Трудно сказать, сколько времени уйдет на обработку WM_SOMEMSG оконной про цедурой — может, несколько миллисекунд, а может, и несколько лет В течение этого времени никакой другой поток не получит доступ к структуре g_s Поэтому лучше составить код иначе
SOMESTRUCT g_s;
CRITICAL_SECTION g_cs;
DWORO WINAPI SomeThread(PVOID pvParam)
{
EnterCriticalSection(&g_cs); SOMESTRUCT sTemp = g_s; LeaveCriticalSection(&g_cs);
// посылаем в окно сообщение
SendMessage(hwndSompWnd, WM_SOMEMSG, &sTemp, 0); return(0);
}