
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
Вас, наверное, заинтересовало, а не следует ли объявить как volatile и мою пере менную g_fResourcelnUse в примере со спин-блокировкой Отвечаю: нет, потому что она передается Interlocked-функции по ссылке, а не по значению. Передача перемен ной по ссылке всегда заставляет функцию считывать ее значение из памяти, и опти мизатор никак нс влияет на это.
Критические секции
Критическая секция (critical section) — это небольшой участок кода, требующий мо нопольного доступа к каким-то общим данным. Она позволяет сделать так, чтобы единовременно только один поток получал доступ к определенному ресурсу Есте ственно, система может в любой момент вытеснить Ваш поток и подключить к про цессорудругой, но ни один из потоков, которым нужен занятый Вами ресурс, не по лучит процессорное время до тех пор, пока Баш поток не выйдет за границы крити ческой секции.
Вот пример кода, который демонстрирует, что может произойти без критической секции:
const int MAX_TIMES = 1000,
int g_nIndex - 0,
DWORD g_dwTimes[MAX_TIMES];
DWORD WINAPI FirstThread(PVOID pvParam)
{
while (g_nIndex < MAX_TIMES)
{
g_dwTimes[g__nIndex] = GetTickCount(); g_nIndex++;
}
return(0),
}
DWORD WINAPI SecondThread(PVOID pvParam)
{
while Cg_nIndex < MAX_TIMES)
{
g_nIndex++;
g_dwTimes[g_nIndex - 1] = GetTickCount();
}
return(0);
}
Здесь предполагается, что функции обоих потоков дают одинаковый результат, хоть они и закодированы с небольшими различиями. Если бы исполнялась только функция FirstThread, она заполнила бы массив g_dwTimes набором чисел с возраста ющими значениями. Это верно и в отношении SecondThread - если бы она тоже ис полнялась независимо. В идеале обе функции даже при одновременном выполнении должны бы по-
прежнему заполнять массив тем же набором чисел. Но в нашем коде возникает проблема: масив g_dwTimes не будет заполнен, как надо, потому что фун кции обоих потоков одновременно обращаются к одним и тем жс глобальным пере менным. Вот как это может произойти.
Допустим, мы только что начали исполнение обоих потоков в системе с одним процессором Первым включился в работу второй поток, т e функция SecondThread (что вполне вероятно), и только она успела увеличить счетчик g_nIndex 1, как си
стема вытеснила ее поток и перешла к исполнению FtrstThread Та заносит в g_dwTi mes[1] показания системного времени, и процессор вновь переключается на испол нение второго потока. SecondThread теперь присваивает элементу g_dwTtmes[1 - 1] новые показания системного времени Поскольку эта операция выполняется позже, новые показания, естественно, выше, чем записанные в элемент g_dwTimes[1]фyнк цией FirstThread Отметьте также, что сначала заполняется первый элемент массива и только потом нулевой. Таким образом, данные в массиве оказываются ошибочными.
Согласен, пример довольно надуманный, но, чтобы привести реалистичный, нуж но минимум несколько страниц кода, Важно другое теперь Вы легко представите, что может произойти в действительности Возьмем пример с управлением связанным списком объектов. Если доступ к связанному списку нс синхронизирован, один по ток может добавить элемент в список в тот момент, когда другой поток пытается найти в нсм какойто элемент. Ситуация станет еще более угрожающей, ссли оба потока одновременно добавят в список новые элементы. Так что, используя критические сек ции, можно и нужно координировать доступ потоков к структурам данных.
Теперь, когда Вы видите все «подводные камни», попробуем исправить этот фраг мент кода с помощью критической секции:
const int MAX_TIMES = 1000; int g_nIndex = 0;
DWORD g_dwTimes[MAX_TIMES]; CRITICAL_SECTION g_cs;
DWORD WINAPI FirstThread(PVOID pvParam)
{
for (BOOL fContinue = TRUE; fContinue; )
{
EnterCriticalSection(&g_cs); if (g_nIndex < MAX_TIMES)
{
g_dwTimes[g_nlndex] = GetTickCount(); g_nIndex++;
}
else
fContinue = FALSE; LeaveCriticalSection(&g_cs);
}
return(0);
}
DWORD WINAPI SecondThread(PVOID pvParam)
{
for (BOOL fContinue = TRUE; fContinue; )
{
EnterCriticalSection(&g_cs); if (g__nIndex < MAX_TIMES)
{
g_nIndex++;
g_dwTimes[g_nIndex - 1] = GetTickCount();
}
else
fContinue = FALSE; LeaveCriticalSecLion(&g_cs);
}
return(0);
}
Я создал экземпляр структуры данных CRITICAL_SECTION — g_cs, а потом «обер нул" весь код, работающий с разделяемым ресурсом (в нашем примере это строки с g_nIndex и g_dwTimes), вызовами EnterCriticalSection и LeaveCriticalSection. Заметьте, что при вызовах этих функций я передаю адрес g_cs.
Запомните несколько важных вещей. Если у Вас есть ресурс, разделяемый несколь кими потоками, Вы должны создать экземпляр структуры CRITICAL_SECTION. Так как я пишу эти строки в самолете, позвольте провести следующую аналогию. Структура CRITICAL_SECTION похожа на туалетную кабинку в самолете, а данные, которые нуж но защитить, — на унитаз, Туалетная кабинка (критическая секция) в самолете очень маленькая, и единовременно в ней может находиться только один человек (поток), пользующийся унитазом (защищенным ресурсом)
Если у Вас есть ресурсы, всегда используемые вместе, Вы можете поместить их в одну кабинку — единственная структура CRITICAL_SECTION будет охранять их всех. Но если ресурсы не всегда используются вместе (например, потоки 1 и 2 работают с одним ресурсом, а потоки 1 и 3 — с другим), Вам придется создать им по отдельной кабинке, или структуре CRITICAL_SECTION.
Теперь в каждом участке кода, где Вы обращаетесь к разделяемому ресурсу, вы зывайте EnterCriticaSection, передавая ей адрес структуры CRITICAL_SECTION, кото рая выделена для этого ресурса. Иными словами, поток, желая обратиться к ресурсу, должен сначала убедиться, нет ли на двери кабинки знака «занято». Структура CRITI CAL_SECTION идентифицирует кабинку, в которую хочет войти поток, а функция EnterCriticalSection — тот инструмент, с помощью которого он узнает, свободна или занята кабинка. EnterCriticalSection допустит вызвавший ее поток в кабинку, если оп ределит, что та свободна. В ином случае (кабинка занята) EnterCriticalSection заставит его ждать, пока она не освободится.
Поток, покидая участок кода, где он работал с защищенным ресурсом, должен вызвать функцию LeaveCriticalSection. Тем самым он уведомляет систему о том, что кабинка с данным ресурсом освободилась. Если Вы забудете это сделать, система бу дет считать, что ресурс все еще занят, и не позволит обратиться к нему другим жду щим потокам, То есть Вы вышли из кабинки и оставили на двери знак "занято".
NOTE:
Самое сложное — запомнить, что любой участок кода, работающего с разде ляемым ресурсом, нужно заключить в вызовы функций EnterCrtticalSection и LeaveCriticalSection. Если Вы забудете сделать это хотя бы в одном месте, ре сурс может быть поврежден Так, если в FirstThread убрать вызовы EnterCritical Section и LeaveCriticalSection, содержимое переменных g_nIndex и g_dwTimes станет некорректным — даже несмотря на то что в SecondThread функции
EnterCriticalSection и LeaveCriticalSection вызываются правильно.
Забыв вызвать эти функции, Вы уподобитесь человеку, который рвется в туалетную кабинку, не обращая внимания па то, есть в ней кто-нибудь или нет. Поток пробивает себе путь к ресурсу и берется им манипулировать. Как Вы прекрасно понимаете, стоит лить одному потоку проявить такую "грубость", и Ваш ресурс станет кучкой бесполезных байтов.
Применяйте критические секции, если Вам не удается решить проблему синхро низации зз счет Interlocked-функций. Преимущество критических секций в том, что они просты в использовании и выполняются очень быстро, так как реализованы на основе Interlocked- функций А главный недостаток — нельзя синхронизировать потоки в разных процессах. Однако в главе 10 я продемонстрирую Вам свой синхронизиру ющий объект, который я назвал оптексом. На его примере Вы увидите, как реализу ются критические секции на уровне операционной системы и как этот объект рабо тает с потоками разных процессов.
Критические секции: важное дополнение
Теперь, когда у Вяс появилось общее представление о критических секциях (зачем они нужны и как с их помощью можно монопольно распоряжаться разделяемым ресур сом), давайте повнимательнее приглядимся ктому, как они устроены Начнем со струк туры CRITICAL_SECTION. Вы не найдете ее в Platform SDK — о ней нет даже упомина ния. В чсм дело?
Хотя CRITICAL_SECTION не относится к недокументированным структурам, Micro soft полагает, что Вам незачем знать, как она устроена И это правильно. Для нас она нвляется своего рода черным ящиком - сама структура известна, а ее элементы — нет. Конечно, поскольку CRITICAL_SECTION — не более чем одна из структур, мы можем сказать, из чего она состоит, изучив заголовочные файлы. (CRITICAT,_SECTlON опреде лена в файле WinNT.h как RTL_CRITICAL_SECTION, а тип структуры RTL_CRITICAL_SEC TION определен в файле WinBase.h,) Но никогда не пишите код, прямо ссылающийся на ее элементы.
Вы работаете со структурой CRITICAL_SECTION исключительно через функции Windows, передавая им адрес соответствующего экземпляра этой структуры Функции сами знают, как обращаться с ее элементами, и гарантируют, что она всегда будет в согласованном состоянии. Так что теперь мы перейдем к рассмотрению этих функций.
Обычно структуры CRITICAL_SECTION создаются как глобальные переменные, доступные всем потокам процесса. Но ничто не мешает нам создавать их как локаль ные переменные или переменные, динамически размещаемые в куче, Есть только два условия, которые надо соблюдать Во-первых, все потоки, которым может понадобить ся ресурс, должны знать адрес структуры CRITICAL_SECTION, которая защищает этот ресурс. Вы можете получить ее адрес, используя любой из существующих механиз мов. Во-вторых, элементы структуры CRITICAL_SECTION следует инициализировать до обращения какого-либо потока к защищенному ресурсу. Структура инициализи руется ВЫЗОВОМ:

VOID InitializeCriticalSection(PCRITICAL_SECTION pcs);
Эта функция инициализирует элементы структуры CRITICAL_SECTION, на которую указывает параметр pcs. Поскольку вся работа данной функции заключается в иници ализации нескольких переменных-членов, она не дает сбоев и поэтому ничего не возвращает (void). InitializeCriticalSection должна быть вызвана до того, как один иэ потоков обратится к EnterCriticalSection. В документации Platform SDK недвусмыслен но сказано, что попытка воспользоваться неинициализированной критической сек цией даст непредсказуемые результаты.
Если Вы знаете, что структура CRITICAL_SECTION больше не понадобится ни од-. ному потоку, удалите ее, вызвав DeleteCriticalSection:
VOID DeleteCriticalSection(PCRITICAL__SECTION pcs);
Она сбрасывает все переменные-члены внутри этой структуры. Естественно, нельзя удалять критическую секцию в тот момент, когда ею все еще пользуется ка кой-либо поток. Об этом нас предупреждают и в документации Platform SDK.
Участок кода, работающий с разделяемым ресурсом, предваряется вызовом:
VOID EnterCriticalSection(PCRITICAL_SECTION pcs);
Первое, что делает EnterCriticalSection, — исследует значения элементов структу ры CRITICAL_SECTION. Если ресурс занят, в них содержатся сведения о том, какой поток пользуется ресурсом. EnterCriticalSection выполняет следующие действия.
Если ресурс свободен, EnterCriticalSection модифицирует элементы структуры, указывая, что вызывающий поток занимает ресурс, после чего немедленно возвращает управление, и поток продолжает свою работу (получив доступ к ресурсу).
Если значения элементов структуры свидетельствуют, что ресурс уже захвачен вызывающим потоком, EnterCriticalSection обновляет их, отмечая тем самым, сколько раз подряд этот поток захватил ресурс, и немедленно возвращает уп равление. Такая ситуация бывает нечасто — лишь тогда, когда поток два раза подряд вызывает EnterCriticalSection без промежуточного вызова LeaweCritical
Section.
Если значения элементов структуры указывают на то, что ресурс занял другим потоком, EnterCriticalSection переводит вызывающий поток в режим ожидания. Это потрясающее свойство критических секций: поток, пребывая в ожидании, не тратит ни кванта процессорного времени Система запоминает, что данный поток хочет получить доступ к ресурсу, и - как только поток, занимавший этот ресурс, вызывает LeaveCriticalSection — вновь начинает выделять нашему пото ку процессорное время При этом она передает ему ресурс, автоматически обновляя элементы структуры CRITICAL_SECTION
Внутреннее устройство EnterCriticalSection не слишком сложно; она выполняет лишь несколько простых операций. Чем она действительно ценна, так это способно стью выполнять их на уровне атомарного доступа. Даже если два потока на много процессорной машине одновременно вызовут EnterCriticalSection, функция все равно корректно справится со своей задачей: один пошк получит ресурс, другой — перей дет в ожидание.
Поток, переведенный EnterCriticalSection в ожидание, может надолго лишиться доступа к процессору, а в плохо написанной программе — даже вообще не получить его. Когда именно так и происходит, говорят, что поток "голодает".
WINDOWS 2000
В действительности потоки, ожидающие освобождения критической секции, никогда не блокируются «навечно» EnterCriticalSection устроена так, что по истечении определенного времени, генерирует исключение. После этого Вы можете подключить к своей программе отладчик и посмотреть, что в ней слу чилось. Длительность времени ожидания функцией EnterCriticaiSection опреде ляется значением параметра CriticalSectionTimeout, который хранится в следу ющем разделе системного реестра:
HKEY_LOCAL_MACHlNE\System\CurrentControlSet\Control\S ession Manager
Длительность времени ожидания измеряется в секундах и по умолчанию равна 2 592 000 сскунд (что составляет ровно 30 суток). Не устанавливайте слишком малое значение этого параметра (например, менее 3 секунд), так как иначе Вы нарушиге работу других потоков и приложений, которые обычно ждут освобождения критической секции дольше трех секунд.
Вместо EnterCriticalSection Вы можете воспользоваться;
BOOL TryEnterCriticalSection(PCRITICAL_SECTIQN pcs);
Эта функция никогда не приостанавливает выполнение вызывающего потока. Но возвращаемое ею значение сообщает, получил ли этот поток доступ к ресурсу. Если при ее вызове указанный ресурс занят другим потоком, она возвращает FALSE.
TryEnterCriticalSection позволяет потоку быстро проверить, доступен ли ресурс, и ссли нет, папяться чем-нибудь другим. Если функция возвращает TRUE, значит, она обновила элементы структуры CRITICAL_SECTION так, чтобы они сообщали о захва те ресурса вызывающим потоком. Отсюда следует, что для каждого вызова функции TryEnterCriticalScction, где она возвращает TRUE, надо предусмотреть парный вызов
LeaveCriticalSection.
WINDOWS 2000
В Windows 98 функция TryEnterCriticalSection определена, но не реализована. При
еевызове всегда возвращается FALSE.
Вконце участка кода, использующего разделяемый ресурс, должен присутствовать вызов.
VOID LeaveCriticalSection(PCRITICAL_SECTION pcs);
Эта функция просматривает элементы структуры CRITICAL_SECTION и уменьша ет счетчик числа захватов ресурса вызывающим потоком на 1. Если его значение боль ше 0, LeaveCriticalSection ничего не делает и просто возвращает управление.
Если значение счетчика достигло 0, LeaveCnitcalSection сначала выясняет, есть ли в системе другие потоки, ждущие данный ресурс в вызове EnlerCriticalSection Если есть хотя бы один такой поток, функция настраивает значения элементов структуры, что бы они сигнализировали о занятости ресурса, и отдает его одному из ждущих пото ков (поток выбирается «по справедливости») Если же ресурс никому не нужен, Leave CriticalSection соответственно сбрасывает элементы структуры.