- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
псевдоописатель,
GetCurrentProcess(), // псевдоописатель процесса GetCurrentProcess(), // описатель процесса, к которому относится новый, настоящий описатель;
&hProcess, // дает новый, настоящий описатель идентифицирующий процесс,
0, // игнорируется из-за DUPLICATE_SAME_ACCESS, FALSE, // новый описатель процесса ненаследуемый, DUPLICATE_SAME_ACCESS); // новому описателю процесса присваиваются
// те же атрибуты защиты, что и псевдоописателю
ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
Операционная система с вытесняющей многозадачностью должна использовать тот или иной алгоритм, позволяющий ей распределять процессорное время между пото ками Здесь мы рассмотрим алгоритмы, применяемые в Windows 98 и Windows 2000. Б главе 6 мы уже обсудили структуру CONTEXT, поддерживаемую в объекте ядра "поток", и выяснили, что она отражает состояние регистров процессора на момент последнего выполнения потока процессором Каждые 20 мс (или около того) Windows просматривает все существующие объекты ядра "поток" и отмечает те из них, кото рые могут получать процессорное время. Далее она выбирает один из таких объек тов и загружает в регистры процессора значения из его контекста Эта операция на зывается переключением контекста (context switching) По каждому потоку Windows ведет учет того, сколько раз он подключался к процессору. Этот показатель сообща ют специальные утилиты вроде Microsoft Spy++ Например, на иллюстрации ниже показан список свойов одного из потоков. Обратите внимание, что этот поток под ключался к процессору 37379 раз
Поток выполняет код и манипулирует данными в адресном пространстве своего процесса Примерно через 20 мс Windows сохранит значения регистров процессора в контексте потока и приостановит сго выполнение. Далее система просмотрит ос тальные объекты ядра "поток", подлежащие выполнению, выберет один из них, заг рузит его контскст в регистры процессора, и все повторится Этот цикл операций — выбор потока, загрузка его
контекста, выполнение и сохранение контекста — начи нается с момента запуска системы и продолжается до cc выключения.
Таков вкратце механизм планирования работы множества потоков. Детали мы обсудим позже, но главное я уже показал Все очень просто, да? Windows потому и называется системой с вытесняющей многозадачностью, что в любой момент может приостановить любой поток и вместо него запустить другой. Как Вы еще увидите, этим механизмом можно управлять, правда, крайне ограниченно. Всегда помните: Вы не в состоянии гарантировать, что Ваш поток будет выполняться непрерывно, что ника кой другой поток не получи'1 доступ к процессору и т д.
NOTE:
Меня часто спрашивают, как сделать так, чтобы поток гарантированно запус кался в течение определенного времени после какого-нибудь события — на пример, не позднее чем через миллисекунду после приема данных с последо вательного порта? Ответ прост: никак. Такие требования можно предъявлять к операционным системам реального времени, но Windows к ним не относит ся. Лишь операционная система реального времени имеет полное представле ние о характеристиках аппаратных средств, на которых она работает (об ин тервалах запаздывания контроллеров жестких дисков, клавиатуры и т. д.). А создавая Windows, Microsoft ставила другую цель обеспечить поддержку мак симально широкого спектра оборудования — различных процессоров, диско вых устройств, сетей и др. Короче говоря, Windows не является операционной системой реального времени.
Хочу особо подчеркнуть, что система планирует выполнение только тех потоков, которые могут получать процессорное время, но большинство потоков в системе к таковым не относится. Так, у некоторых объектов-потоков значение счетчика просто ев (suspend count) больше 0, а значит, соответствующие потоки приостановлены и не получают процессорное время. Вы можете создать приостановленный поток вызовом CreateProcess или CreateThread с флагом CREATESUSPENDED (В следующем разделе я расскажу и о таких функциях, как SuspendThread и ResumeThread.)
Кроме приостановленных, существуют и другие потоки, не участвующие в распре делении процессорного времени, — они ожидают каких-либо событий. Например, если Вы запускаете Notepad и не работаете в нем с текстом, его поток бездействует, а система не выделяет процессорное время тем, кому нечего делать. Но стоит лишь сместить его окно, прокрутить в нем текст или что-то ввести, как система автомати чески включит поток Notepad в число планируемых Это вовсе не означает, что по ток Notepad тут жс начнет выполняться. Просто система учтет его при планировании потоков и когда-нибудь выделит ему время — по возможности в ближайшем будущем
Приостановка и возобновление потоков
В объекте ядра "поток" имеется переменная — счетчик числа простоев данного по тока При вызове CreateProcess или CreateThread он инициализируется значением, рав ным 1, которое запрещает системе выделять новому потоку процессорное время. Та кая схема весьма разумна: сразу после создания поток не готов к выполнению, ему нужно время для инициализации.
После гого как поток полностью инициализирован, CreateProcess или CreateThread проверяет, не передан ли ей флаг CREATE_SUSPENDED, и, если да, возвращает управ ление, оставив поток в приостановленном состоянии В ином случае счетчик простоев обнуляется, и поток включается в число планируемых — если только он не ждет ка когото события (например, ввода с клавиатуры).
Создав поток в приостановленном состоянии, Выможете настроить некоторые его свойства (например, приоритет, о котором мы поговорим позже). Закончив настройку, Вы должны разрешить выполнение потока. Для этого вызовите ResumeThread и пере дайте описатель потока, возвращенный функцией CreateThread (описатель можно взять и из структуры, на которую указывает параметр ppiProcInfo, передаваемый в CreateProcess).
DWORD ResumeThread(HANDLE hThread);
Если вызов ResumeThread прошел успешно, она возвращает предыдущее значение счетчика простоев данного потока; в ином случае — 0xFFFFFFFF.
Выполнение отдельного потока можно приостанавливать несколько раз. Если поток приостановлен 3 раза, то и возобновлен он должен быть тоже 3 раза — лишь тогда система выделит ему процессорное время. Выполнение потока можно приос тановить не только при его создании с флагом CREATE_SUSPENDED, но и вызовом SuspendThread.
DWORD RuspendThread(HANDLE hThread);
Любой поток может вызвать эту функцию и приостановить выполнение другого потока (конечно, если его описатель известен). Хоть об этом нигде и не говорится (но я все равно скажу!), приостановить свое выполнение поток способен сам, а во зобновить себя без посторонней помощи — нет. Как и ResumeThread, функция Sus pendThread возвращает предыдущее значение счетчика простоев данного потока. Поток можно приостанавливать не более чем MAXIMUM_SUSPEND_COUNT раз (в файле WinNT.h это значение определено как 127). Обратите внимание, что Suspend Thread в режиме ядра работает асинхронно, но в пользовательском режиме не выпол няется, пока потокостается в приостановленном состоянии.
Создавая реальное приложение, будьте осторожны с вызовами SuspendThread, так как нельзя заранее сказать, чем будет заниматься его поток в момент приостановки. Например, он пытается выделить память из кучи и поэтому заблокировал к ней дос туп. Тогда другим потокам, которым тоже нужна динамическая память, придется ждать его возобновления. SuspendThread безопасна только в том случае, когда Вы точно знаете, что делает (или может делать) поток, и предусматриваете все меры для исклю чения вероятных проблем и взаимной блокировки потоков. (О взаимной блокировке и других проблемах синхронизации потоков я расскажу в главах 8, 9 и 10.)
Приостановка и возобновление процессов
В Windows понятия "приостановка" и "возобновление" неприменимы к процессам, так как они не участвуют в распределении процессорного времени. Однако меня не рая спрашивали, как одним махом приостановить все потоки определенного процесса. Это можно сделать из другого процесса, причем он должен быть отладчиком и, в ча стности,
вызывать функции вроде WaitForDebugEvent и ContinueDebugEvent.
Других способов приостановки всех потоков процесса в Windows нет: програм ма, выполняющая такую операцию, может "потерять" новые потоки. Система должна как-то приостанавливать в этот период не только все существующие, но и вновь со здаваемые потоки. Microsoft предпочла встроить эту функциональность в системный механизм отладки.
Вам, конечно, не удастся написать идеальную функцию SuspendProcess, но вполне по силам добиться ec удовлетворительной работы во многих ситуациях. Вот мой ва риант функции SuspendProcess.
VOID SuspendProcess(DWORD dwProcessID, BOOL tSuspend)
{
// получаем список потоков в системе
HANDLE hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, dwProcessID),
if (hSnapshot != INVALID_HANDLE_VALUE) {
// просматриваем список потоков
THREADENTRY32 te = { sizeof(te) };
BOOL fOk = Thread32First(hSnapshot, &te);
for (, fOk, fOk = Thread32Next(hSnapshot, &te))
{
//относится ли данный поток к нужному процессу if (te.th320wnerProcessID == dwProcessID)
{
//пытаемся получить описатель потока по его идентификатору
HANDLE hThread = OpenThread(THREAD_SUSPEND_RESUME, FALSE, te th32ThreadID);
if (hThread != NULL)
{
// приоcтанавливаем или возобновляем поток if (fSuspend)
SuspendTh read(hThread); else ResumeThread(hThread);
}
CloseHandle(hThread);
}
}
CloseHandle(hSnapsnot);
}
}
Для перечисления списка потоков я использую ToolHelp функции (они рассмат ривались в главе 4). Определив потоки нужною процесса, я вызываю OpenThread.
HANDLE OpenThread( DWORD dwDesiredAccess, BOOL bInheritHandle, DWORD dwThreadID);
Это новая функция, которая появилась в Windows 2000 Она находит объект ядра "поток" по идентификатору, указанному в dwTbreadJD, увеличивает его счетчик поль зователей на 1 и возвращает описатель объекта Получив описатель, я могу передать его в
