
- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
Есть еще две важные вещи, касающиеся GetModuleHandle. Во-первых, она прове ряет адресное пространство только того процесса, который ее вызвал. Если этот про цесс не использует никаких функций, связанных со стандартными диалоговыми ок нами, то, вызвав GetModuleHandle и передав ей аргумент "ComDlg32", Вы получите NULL - пусть даже модуль ComDlg32.dll и загружен в адресное пространство какого нибудь другого процесса. Во-вторых, вызов этой функции и передача ей NULL дает в результате базовый адрес ЕХЕ-фяйла в адресном пространстве процесса. Так что, вы зывая функцию в виде GetModuleHandle(NULL — даже из кода в DLL, — Вы получаете базовый адрес EXE-, а не DLL-файла.
Описатель предыдущего экземпляра процесса
Я уже говорил, что стартовый код из библиотеки С/С++ всегда передает в функцию (w)WinMain параметр binstExePrev как NULL. Этот параметр предусмотрен исключи тельно для совместимости с 16-разрядными версиями Windows и не имеет никакого смысла для Windows-приложений. Поэтому я всегда пишу заголовок (w)WinMain так:
int WINAPI WinMain( HINSTANCE hinstExe,
HINSTANCE, PSTR pszCmdLine, int nCmdShow);
Поскольку у второго параметра нет имени, компилятор не выдает предупрежде ние
"parameter not referenced" ("нет ссылки на параметр"),
Командная строка процесса
При создании новому процессу передается командная строка, которая почти никог да не бывает пустой — как минимум, она содержит имя исполняемого файла, исполь зованного при создании этого процесса. Однако, как Вы увидите ниже (при обсужде нии функции CreateProcess), возможны случаи, когда процесс получает командную строку, состоящую из единственного символа — нуля, завершающего строку. В момент запуска приложения стартовый код из библиотеки С/С++ считывает командную строку процесса, пропускает имя исполняемого файла и заносит в параметр pszCmdLine функции (w)WinMain указатель на оставшуюся часть командной строки.
Параметр pszCmdLine всегда указывает на ANSI-строку. Но, заменив WinMain на wWinMain, Вы получите доступ к Unicode-версии командной строки для своего про цесса
Программа может анализировать и интерпретировать командную строку как угод но. Поскольку pszCrndLine относится к типу PSTR, а не PCSTR, не стесняйтесь и запи сывайте строку прямо в буфер, на который указывает этот параметр, но ни при каких условиях не переступайте границу буфера. Лично я всегда рассматриваю этот буфер как "только для чтений". Если в командную строку нужно внести изменения, я снача ла копирую буфер, содержащий командную строку, в локальный буфер (в своей про грамме), который затем и модифицирую.
Указатель на полную командную строку процесса можно.получить и вызовом функции
GetCommandLine.
PTSTR GetCommandLine();
Она возвращает указатель на буфер, содержащий полную командную строку, вклю чая полное имя (вместе с путем) исполняемого файла.
Во многих приложениях безусловно удобнее использовать командную строку, предварительно разбитую на отдельные компоненты, доступ к которым приложение может получить через глобальные переменные _argc и _argv (или _wargu). Функ ция CommandLineToArgvW расщепляет Unicode-строку на отдельные компоненты:
PWSTR CommandLineToArgvW( PWSTR pszCmdLine, int pNumArgs);
Буква W в конце имени этой функции намекает на "широкие" (wide) символы и подсказывает, что функция существует только в Unicode-версии. Параметр pszCmdLine указывает на командную строку Его обычно получают предварительным вызовом GetCommandLineW Параметр pNumArgs — это адрес целочисленной переменной, в которой задается количество аргументов в командной строке. Функция Command LineToArgvW возвращает адрес массива указателей на Unicode-строки
CommandLineToArgvW выделает нужную память автоматически. Большинство при ложений не освобождает эту память, полагаясь на операционную систему, которая проводит очистку ресурсов по завершении процесса И такой подход вполне прием лем. Нo если Вы хотите сами освободить эту память, сделайте так:
int pNumArgs;
PWSTR *ppArgv = CommandLineToArgvW(GetCommandLineW(), &pNumArgs);
//используйте эти аргументы if (*ppArgv[1] == L x ) {
//освободите блок памяти HeapFree(GetProcessHeap() 0 ppArgv);
Переменные окружения
С любым процессом связан блок переменных окружения — область памяти, выделен ная в адресном пространстве процесса Каждый блок содержит группу строк такого вида
VarName1-VarValue1\0 VarName2-VarValue2\0 VarName3=VarValue3\0
...
VarNameX=VarValueX\0
\0
Первая часть каждой строки — имя переменной окружения. Зa ним следует знак равенства и значение, присваиваемое переменной Строки в блоке переменных ок ружения должны бьпь отсортированы в алфавитном порядке по именам переменных
Знак равенства разделяет имя переменной и ее значение, так что его нельзя ис пользовать как символ в имени переменной Важную роль играют и пробелы Например, объявив две переменные
XYZ= Windows (обратите внимание на пробел за знаком равенства)
ABC=Windows
и сравнив значения переменных ХУZ и АВС, Вы увидите, что система их различает, — она учитывает любой пробел, поставленный перед знаком равенства или после него Вот что будет, если записать, скажем, так

XYZ =Home (обратите внимание на пробел перед знаком равенства)
XYZ=Work
Вы получите первую переменную с именем "XYZ", содержащую строку "Home", и вторую переменную "XYZ", содержащую строку "Work"
Конец блока переменных окружения помечается дополнительным нулевым сим волом
WINDOWS 98
Чтобы создать исходный набор переменных окружения для Windows 98, надо модифицировать файл Autoexec bat, поместив в него группу строк SET в виде
SET VarName=VarValue
При перезагрузке система учтет новое содержимое файла Autoexecbat, и тогда любые заданные Вами переменные окружения станут доступны всем процессам, инициируемым в сеансе работы с Windows 98
WINDOWS 2000
При регистрации пользователя на входе в Windows 2000 система создает npo цессоболочку, связывая с ним группу строк — переменных окружения. Систе ма получает начальные значения этих строк, анализируя два раздела в рссст pe. В первом:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\
SessionManager\Environment
содержится список переменных окружения, относящихся к системе, а во втором:
HKEY_CURRENT_USER\Environment
находится список переменных окружения, относящихся к пользователю, ко торый в настоящее время зарегистрирован в системе.
Пользователь может добавлять, удалять или изменять любые переменные через апплет System из Control Panel B этом апплете надо открыть вкладку Advanced и щелкнуть кнопку Environment Variables — тогда на экране появит ся следующее диалоговое окно.
Модифицировать переменные из списка System Variables разрешается толь ко пользователю с правами администратора.
Кроме того, для модификации записей в реестре Ваша программа может обращаться к Windows-функциям, позволяющим манипулировать с реестром. Однако, чтобы изменения вступили в силу, пользователь должен выйти из си стемы и вновь войти в нее. Некоторые приложения типа Explorer, Task Manager или Control Pancl могут обновлять свои блоки переменных окружения на базе новых значений в реестре, когда их главные окна получают сообщение WM_SET TINGCHANGE, Например, если Вы, изменив реестр, хотите, чтобы какие-то приложения соответственно обновили свои блоки переменных окружения, вызовите
SendMessage(HWND_BROADCAST, WM_SETTINGCHANGE 0, (LPARAM)
TEXT("Envnuntnent"))
Обычно дочерний процесс наследует набор переменных окружения от родитель ского Однако последний способен управлячь чем, какие переменные окружения на следуются дочерним процессом, а какие — нет. Но об этом я расскажу, когда мы зай
мемся функцией CreateProcess. Под наследованием я имею в виду, что дочерний про цесс получает свою копию блока переменных окружения от родительского, а не то, что дочерний и родительский процессы совместно используют один и тот же блок, Так что дочерний процесс может добавлять, удалять или модифицировать перемен ные в своем блоке, и эти изменения не затронут блок, принадлежащий родительско му процессу.
Переменные окружения обычно применяются для тонкой настройки приложения. Пользователь создает и инициализирует переменную окружения, затем запускает приложение, и оно, обнаружив эту переменную, проверяет ее значение и соответству ющим образом настраивается.
Увы, многим пользователям не под силу разобраться в переменных окружения, а значит, трудно указать правильные значения. Ведь для этого надо не только хорошо знать синтаксис переменных, но и, конечно, понимать, что стоит за теми или иными их значениями. С другой стороны, почти все (а может, и все) приложения, основан ные на GUI, дают возможность тонкой настройки через диалоговые окна. Такой под ход, естественно, нагляднее и проще.
А теперь, если у Вас еще не пропало жсланис манипулировать переменными ок ружения, поговорим о предназначенных для этой цели функциях. GetEnvironment Variable позволяет выявлять присутствие той или иной переменной окружения и определять ее значение:
DWORD GetEnvironmentVariable( PCTSTR pszName, PTSTR pszValue, DWORD cchValue);
При вызове GetEnvironmentVariable параметр pszName должен указывать на имя интересующей Вас переменной, pszValue — на буфер, в который будет помещено зна чение переменной, а в cchValue следует сообщить размер буфера в символах. Функ ция возвращает либо количество символов, скопированных в буфер, либо 0, если ей не удалось обнаружить переменную окружения с таким именем.
Кстати, в реестре многие строки содержат подставляемые части, например.
%USERPROFILE%\My Documents