Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Создание эффективных приложений для Windows Джеффри Рихтер 2004 (Книга).pdf
Скачиваний:
385
Добавлен:
15.06.2014
Размер:
8.44 Mб
Скачать

исключении, оно должно дать один из трех идентификаторов, оп ределенных в заголовочном Windows-файле Exept.h

Идентификатор

Значение

 

 

EXCEPTION_EXECUTE_HANDLER

1

 

 

EXCEPTION_CONTINUE_SEARCH

0

 

 

EXCEPTION_CONTINUE_EXECUTION

-1

 

 

Далее мы обсудим, как эти идентификаторы изменяют выполнение потока. Читая следующие разделы, посматривайте на блок-схему на рис. 24-1, которая иллюстриру ет операции, выполняемые системой после генерации исключения

EXCEPTION_EXECUTE_HANDLER

Фильтр исключений в Funcmeister2 определен как EXCEPTIONEXECUTE_HANDLER Это значение сообщает системе в основном вот что: "Я вижу это исключение; так и знал, что оно где-нибудь произойдет; у меня есть код для его обрабогки, и я хочу его сейчас выполнить" В этот момент система проводит глобальную раскрутку (о ней — немного позже), а затем управление передается коду внутри блока except (коду обра ботчика исключений). После его выполнения система считает исключение обрабо танным и разрешает программе продолжить работу. Этот механизм позволяет Win dowsприложениям перехватывать ошибки, обрабатывать их и продолжать выполне ние — пользователь даже не узнает, что была какая-то ошибка.

Но вот откуда возобновится выполнение? Поразмыслив, можно представить не сколько вариантов.

Первый вариант. Выполнение возобновляется сразу за строкой, возбудившей ис ключение. Тогда в Funcmeister2 выполнение продолжилось бы с инструкции, которая прибавляет к dwTemp число 10, Вроде логично, но на дслс в большинстве программ нельзя продолжить корректное выполнение, если одна из предыдущих инструкций вызвала ошибку.

В нашем случае нормальное выполнение можно продолжить, но Funcmeister2 в этом смысле не типична. Ваш код скорее всего структурирован так, что инструкции, следующие за гой, где произошло исключение, ожидают от нее корректное значение. Например, у Вас может быть функция, выделяющая блок памяти, тогда для опера ций с ним, несомненно, предусмотрена целая серия инструкций. Если блок памяти выделить не удается, все они потерпят неудачу, и программа повторно вызовет иск лючение.

Вот еще пример того, почему выполнение нельзя продолжить сразу после коман ды, возбудившей исключение. Заменим оператор языка С, дающий исключение в Funcmeisfer2 строкой:

malloc(5 / dwTemp);

Компилятор сгенерирует для нее машинные команды, которые выполняют деле ние, результат помещают в стек и вызывают malloc. Если попытка деления привела к ошибке, дальнейшее (корректное) выполнение кода невозможно. Система должна поместить чтото в стек, иначе он будет разрушен.

К счастью, Microsoft не дает нам шанса возобновить выполнение со строки, рас положенной вслед за возбудившей исключение Это спасает нас от только что опи санных потенциальных проблем.

Второй вариант, Выполнение возобновляется с той же команды, которая возбуди ла исключение. Этот вариант довольно интересен. Допустим, в блоке except присут ствует оператор:

dwTemp = 2;

Тогда Вы вполне могли бы возобновить выполнение с возбудившей исключение команды. На этот раз Вы поделили бы 5 на 2, и программа спокойно продолжила бы свою работу. Иначе говоря, Вы что-то меняете и заставляете систему повторить вы полнение команды, возбудившей исключение. Но, применяя такой прием, нужно иметь в виду некоторые тонкости (о них — чуть позже).

Третий, и последний, вариант — приложение возобновляет выполнение с инст рукции, следующей за блоком except. Именно так и происходит, когда фильтр исклю чений определен как EXCEPTION_EXECUTE_HANDLER. По окончании выполнения кода в блоке exceрt управление передается на первую строку за этим блоком.

Некоторые полезные примеры

Допустим, Вы хотите создать отказоустойчивое приложение, которое должно рабо тать 24 часа в сутки и 7 дней в неделю. В наше время, когда программное обеспече ние настолько усложнилось и подвержено влиянию множества непредсказуемых фак торов, мне кажется, что без SEH просто нельзя создать действительно надежное при ложение. Возьмем элементарный пример, функцию strcpy из библиотеки С:

char* strcpy(char* strDestination, const char* strSource);

Крошечная, давно известная и очень простая функция, да? Разве она может выз вать завершение процесса? Ну, если в каком-нибудь из параметров будет передан NULL (или любой другой недопустимый адрес), strcpy приведет к нарушению доступа, и весь процесс будет закрыт.

Создание абсолютно надежной функции strcpy возможно только при использова нии SEH

char* RobustStrCpy(char* strDestination, const char* strSource)

{

__try

{

strcpy(strDestination, strSource);

}

except (EXCEPTION_EXECUTE_HANDLER)

{

// здесь ничего на делаем

}

return(strDestination);

}

Все, что делает эта функция, — помещает вызов strcpy в SEH-фрейм. Если вызов strcfiy приходит успешно, RobustStrCpy просто возвращает управление. Если же strcpy генерирует нарушение доступа, фильтр исключений возвращает значение EXCEP TION_EXECIITE_HANDLER, которое заставляет поток выполнить код обработчика. В функции RobublStrCpy обработчик не делает ровным счетом ничего, и опягь Robust StrCpy просто возвращает управление. Но она никогда не приведет к аварийному за вершению процесса1

Рассмотрим другой пример. Вот функция, которая сообщает число отделенных пробелами лексем в строке.

int RobustHowManyToken(const char* str)

{

int nHowManyTokens = -1,

// значение, равное -1, сообщает о неудаче

char* strTemp = NULL;

// предполагаем худшее

__try

{

// создаем временный буфер

strTemp = (char*) malloc(strlen(str) + 1);

//копируем исходную строку во временный буфер

strcpy(strTemp, str);

//получаем первую лексему

char* pszToken = strtok(strTemp, " ");

// перечисляем

все

лексемы

for (; pszToken !=

NULL; pszToken =

strtok(NULL, "

"))

nHowManyTokens++;

nHowManyTokens++; // добавляем 1, так как мы начали с -1

}

__except (EXCEPTION_EXECUTE_HANDLER}

{

// здесь ничего не делаем

}

// удаляем временный буфер (гарантированная операция) free(strTemp);

return(nHowManyTokens);

}

Эта функция создает временный буфер и копирует в нсго строку. Затем, вызывая библиотечную функцию strtok, она разбирает строку на отдельные лексемы. Времен ный буфер необходим из-за того, что strtok модифицирует анализируемую строку.

Благодаря SEH эта обманчиво простая функция справляется с любыми неожидан ностями. Давайте посмотрим, как она работает в некоторых ситуациях

Во-первых, если ей передастся NULL (или любой другой недопустимый адрес), переменная nHowManyTokens сохраняет исходное значение -1. Вызов strlen внутри блока try приводит к нарушению доступа. Тогда управление передается фильтру ис ключений, а от него — блоку except, который ничего не делает. После блока except вызывается free, чтобы удалить временный буфер в памяти. Однако он не был создан, и в данной ситуации мы вызываем/гее с передачей ей NULL Стандарт ANSl С допус кает вызов/me с передачей NULL, в каковом случае эта функция просто возвращает управление, так что ошибки здесь нет. В итоге RobustHowManyToken возвращает зна чение -1, сообщая о неудаче, и аварийного завершения процесса нс происходит,

Во-вторых, если функция получает корректный адрес, но вызов malloc (внутри блока try) заканчивается неудачно и дает NULL, то обращение к strcpy опять приво дит к нарушению доступа. Вновь активизируется фильтр исключений, выполняется блок ехсерг (который ничего не делает), вызывается free с передачей NULL (из-за чего она тоже ничего не делает), и RobustHowManyToken возвращает -1, сообщая о неуда че. Аварийного завершения процесса не происходит.

Наконец, допустим, что функции передан корректный адрес и вызов malloc про шел успешно. Тогда преуспеет и остальной код, а в переменную nHowManyTokens бу дет записано число лексем в строке, В этом случае выражение в фильтре исключений (в конце блока try) не оценивается, код в блоке except не выполняется, временный буфер нормально удаляется, и nHowManyTokens сообщает количество лексем в строке.

Функция RobustHowManyToken демонстрирует, как обеспечить гарантированную очистку ресурса, не прибегая к try-finally. Также гарантируется выполнение любого кода, расположенного за обработчиком исключения (если, конечно, функция не воз вращает управление из блока try, но таких вещей Вы должны избегать)

Атеперь рассмотрим последний, особенно полезный пример использования SEH. Вот функция, которая дублирует блок памяти:

PBYTE RobustMemDup(PBYTE pbSrc, size_t cb)

{

PBYTE pbDup = NULL;

// заранее предполагаем неудачу

__try

{

// создаем буфер для дублированного блока памяти

pbDup = (PBYTE) malloc(cb);