- •WINDOWS
- •Джеффри Рихтер
- •ЧАCTЬ I МАТЕРИАЛЫ ДЛЯ ОБЯЗАТЕЛЬНОГО ЧТЕНИЯ
- •ГЛАВА 1. Обработка ошибок
- •Вы тоже можете это сделать
- •Программа-пример ErrorShow
- •ГЛАВА 2 Unicode
- •Наборы символов
- •Одно- и двухбайтовые наборы символов
- •Unicode: набор широких символов
- •Почему Unicode?
- •Windows 2000 и Unicode
- •Windows 98 и Unicode
- •Windows CE и Unicode
- •В чью пользу счет?
- •Unicode и СОМ
- •Как писать программу с использованием Unicode
- •Unicode и библиотека С
- •Типы данных, определенные в Windows для Unicode
- •Unicode- и ANSI-функции в Windows
- •Строковые функции Windows
- •Ресурсы
- •Текстовые файлы
- •Перекодировка строк из Unicode в ANSI и обратно
- •ГЛАВА 3 Объекты ядра
- •Что такое объект ядра
- •Учет пользователей объектов ядра
- •Защита
- •Таблица описателей объектов ядра
- •Создание объекта ядра
- •Закрытие объекта ядра
- •Совместное использование объектов ядра несколькими процессами
- •Наследование описателя объекта
- •Изменение флагов описателя
- •Именованные объекты
- •Пространства имен Terminal Server
- •Дублирование описателей объектов
- •ЧАСТЬ II НАЧИНАЕМ РАБОТАТЬ
- •ГЛАВА 4 Процессы
- •Ваше первое Windows-приложение
- •Описатель экземпляра процесса
- •Описатель предыдущего экземпляра процесса
- •Командная строка процесса
- •Переменные окружения
- •Привязка к процессорам
- •Режим обработки ошибок
- •Текущие диск и каталог для процесса
- •Текущие каталоги для процесса
- •Определение версии системы
- •Функция CreateProcess
- •Параметры pszApplicationName и pszCommandLine
- •Параметры psaProcess, psaThread и blnheritHandles
- •Параметр fdwCreate
- •Параметр pvEnvironment
- •Параметр pszCurDir
- •Параметр psiStartlnfo
- •Параметр ppiProclnfo
- •Завершение процесса
- •Возврат управления входной функцией первичного потока
- •Функция ExitProcess
- •Функция TerminateProcess
- •Когда все потоки процесса уходят
- •Что происходит при завершении процесса
- •Дочерние процессы
- •Запуск обособленных дочерних процессов
- •Перечисление процессов, выполняемых в системе
- •Программа-пример Processlnfo
- •ГЛАВА 5 Задания
- •Определение ограничений, налагаемых на процессы в задании
- •Включение процесса в задание
- •Завершение всех процессов в задании
- •Получение статистической информации о задании
- •Уведомления заданий
- •Программа-пример JobLab
- •ГЛАВА 6 Базовые сведения о потоках
- •В каких случаях потоки создаются
- •И в каких случаях потоки не создаются
- •Ваша первая функция потока
- •Функция CreateThread
- •Параметр psa
- •Параметр cbStack
- •Параметры pfnStartAddr и pvParam
- •Параметр fdwCreate
- •Параметр pdwThreadlD
- •Завершение потока
- •Возврат управления функцией потока
- •Функция ExitThread
- •Функция TerminateThread
- •Если завершается процесс
- •Что происходит при завершении потока
- •Кое-что о внутреннем устройстве потока
- •Некоторые соображения по библиотеке С/С++
- •Ой, вместо _beginthreadex я по ошибке вызвал CreateThread
- •Библиотечные функции, которые лучше не вызывать
- •Как узнать о себе
- •Преобразование псевдоописателя в настоящий описатель
- •ГЛАВА 7 Планирование потоков, приоритет и привязка к процессорам
- •Приостановка и возобновление потоков
- •Приостановка и возобновление процессов
- •Функция Sleep
- •Переключение потоков
- •Определение периодов выполнения потока
- •Структура CONTEXT
- •Приоритеты потоков
- •Абстрагирование приоритетов
- •Программирование приоритетов
- •Динамическое изменение уровня приоритета потока
- •Подстройка планировщика для активного процесса
- •Программа-пример Scheduling Lab
- •Привязка потоков к процессорам
- •ГЛАВА 8 Синхронизация потоков в пользовательском режиме
- •Кэш-линии
- •Более сложные методы синхронизации потоков
- •Худшее, что можно сделать
- •Критические секции
- •Критические секции: важное дополнение
- •Критические секции и спин-блокировка
- •Критические секции и обработка ошибок
- •Несколько полезных приемов
- •Не занимайте критические секции надолго
- •ГЛАВА 9 Синхронизация потоков с использованием объектов ядра
- •Wait-функции
- •Побочные эффекты успешного ожидания
- •События
- •Программа-пример Handshake
- •Ожидаемые таймеры
- •Ожидаемые таймеры и АРС-очередь
- •И еще кое-что о таймерах
- •Семафоры
- •Мьютексы
- •Отказ от объекта-мьютекса
- •Мьютексы и критические секции
- •Программа-пример Queue
- •Сводная таблица объектов, используемых для синхронизации потоков
- •Другие функции, применяемые в синхронизации потоков
- •Асинхронный ввод-вывод на устройствах
- •Функция WaitForlnputldle
- •Функция MsgWaitForMultipleObjects(Ex)
- •Функция WaitForDebugEvent
- •Функция SignalObjectAndWait
- •ГЛАВА 10 Полезные средства для синхронизации потоков
- •Реализация критической секции: объект-оптекс
- •Программа-пример Optex
- •Создание инверсных семафоров и типов данных, безопасных в многопоточной среде
- •Программа-пример lnterlockedType
- •Синхронизация в сценарии "один писатель/группа читателей"
- •Программа-пример SWMRG
- •Реализация функции WaitForMultipleExpressions
- •Программа-пример WaitForMultExp
- •ГЛАВА 11 Пулы потоков
- •Сценарий 1: асинхронный вызов функций
- •Сценарий 2: вызов функций через определенные интервалы времени
- •Программа-пример TimedMsgBox
- •Сценарий 3: вызов функций при освобождении отдельных объектов ядра
- •Сценарий 4; вызов функций по завершении запросов на асинхронный ввод-вывод
- •ГЛАВА 12 Волокна
- •Работа с волокнами
- •Программа-пример Counter
- •ЧАСТЬ III УПРАВЛЕНИЕ ПАМЯТЬЮ
- •Виртуальное адресное пространство процесса
- •Как адресное пространство разбивается на разделы
- •Увеличение раздела для кода и данных пользовательского режима до 3 Гб на процессорах x86 (только Windows 2000)
- •Закрытый раздел размером 64 Кб (только Windows 2000)
- •Раздел для общих MMF (только Windows 98)
- •Регионы в адресном пространстве
- •Передача региону физической памяти
- •Физическая память и страничный файл
- •Физическая память в страничном файле не хранится
- •Атрибуты защиты
- •Защита типа «копирование при записи»
- •Специальные флаги атрибутов защиты
- •Подводя итоги
- •Блоки внутри регионов
- •Особенности адресного пространства в Windows 98
- •Выравнивание данных
- •ГЛАВА 14 Исследование виртуальной памяти
- •Системная информация
- •Программа-пример Syslnfo
- •Статус виртуальной памяти
- •Программа-пример VMStat
- •Определение состояния адресного пространства
- •Функция VMQuery
- •Программа-пример VMMap
- •ГЛАВА 15 Использование виртуальной памяти в приложениях
- •Резервирование региона в адресном пространстве
- •Передача памяти зарезервированному региону
- •Резервирование региона с одновременной передачей физической памяти
- •В какой момент региону передают физическую память
- •Возврат физической памяти и освобождение региона
- •В какой момент физическую память возвращают системе
- •Программа-пример VMAIloc
- •Изменение атрибутов защиты
- •Сброс содержимого физической памяти
- •Программа-пример MemReset
- •Механизм Address Windowing Extensions (только Windows 2000)
- •Программа-пример AWE
- •ГЛАВА 16 Стек потока
- •Стек потока в Windows 98
- •Функция из библиотеки С/С++ для контроля стека
- •Программа-пример Summation
- •ГЛАВА 17 Проецируемые в память файлы
- •Проецирование в память EXE- и DLL-файлов
- •Статические данные не разделяются несколькими экземплярами EXE или DLL
- •Программа-пример Applnst
- •Файлы данных, проецируемые в память
- •Метод 1: один файл, один буфер
- •Метод 2: два файла, один буфер
- •Метод 3: один файл, два буфера
- •Метод 4: один файл и никаких буферов
- •Использование проецируемых в память файлов
- •Этап1: создание или открытие объекта ядра «файл»
- •Этап 2: создание объекта ядра «проекция файла»
- •Этап 3: проецирование файловых данных на адресное пространство процесса
- •Этап 4: отключение файла данных от адресного пространства процесса
- •Этапы 5 и 6: закрытие объектов «проекция файла» и «файл»
- •Программа-пример FileRev
- •Обработка больших файлов
- •Проецируемые файлы и когерентность
- •Базовый адрес файла, проецируемого в память
- •Особенности проецирования файлов на разных платформах
- •Совместный доступ процессов к данным через механизм проецирования
- •Файлы, проецируемые на физическую память из страничного файла
- •Программа-пример MMFShare
- •Частичная передача физической памяти проецируемым файлам
- •Программа-пример MMFSparse
- •ГЛАВА 18 Динамически распределяемая память
- •Стандартная куча процесса
- •Дополнительные кучи в процессе
- •Защита компонентов
- •Более эффективное управление памятью
- •Локальный доступ
- •Исключение издержек, связанных с синхронизацией потоков
- •Быстрое освобождение всей памяти в куче
- •Создание дополнительной кучи
- •Выделение блока памяти из кучи
- •Изменение размера блока
- •Определение размера блока
- •Освобождение блока
- •Уничтожение кучи
- •Использование куч в программах на С++
- •Другие функции управления кучами
- •ЧАСТЬ IV ДИНАМИЧЕСКИ ПОДКЛЮЧАЕМЫЕ БИБЛИОТЕКИ
- •ГЛАВА 19 DLL: основы
- •DLL и адресное пространство процесса
- •Общая картина
- •Создание DLL-модуля
- •Что такое экспорт
- •Создание DLL для использования с другими средствами разработки (отличными от Visual C++)
- •Создание ЕХЕ-модуля
- •Что такое импорт
- •Выполнение ЕХЕ-модуля
- •ГЛАВА 20 DLL: более сложные методы программирования
- •Явная загрузка DLL и связывание идентификаторов
- •Явная загрузка DLL
- •Явная выгрузка DLL
- •Явное подключение экспортируемого идентификатора
- •Функция входа/выхода
- •Уведомление DLL_PROCESS_ATTACH
- •Уведомление DLL_PROCESS_DETACH
- •Уведомление DLL_THREAD_ATTACH
- •Уведомление DLL_THREAD_DETACH
- •Как система упорядочивает вызовы DIIMain
- •Функция DllMain и библиотека С/С++
- •Отложенная загрузка DLL
- •Программа-пример DelayLoadApp
- •Переадресация вызовов функций
- •Известные DLL
- •Перенаправление DLL
- •Модификация базовых адресов модулей
- •Связывание модулей
- •ГЛАВА 21 Локальная память потока
- •Динамическая локальная память потока
- •Использование динамической TLS
- •Статическая локальная память потока
- •Пример внедрения DLL
- •Внедрение DLL c использованием реестра
- •Внедрение DLL с помощью ловушек
- •Утилита для сохранения позиций элементов на рабочем столе
- •Внедрение DLL с помощью удаленных потоков
- •Программа-пример lnjLib
- •Библиотека lmgWalk.dll
- •Внедрение троянской DLL
- •Внедрение DLL как отладчика
- •Внедрение кода в среде Windows 98 через проецируемый в память файл
- •Внедрение кода через функцию CreateProcess
- •Перехват API-вызовов: пример
- •Перехват API-вызовов подменой кода
- •Перехват API-вызовов с использованием раздела импорта
- •Программа-пример LastMsgBoxlnfo
- •ЧАСТЬ V СТРУКТУРНАЯ ОБРАБОТКА ИСКЛЮЧЕНИЙ
- •ГЛАВА 23 Обработчики завершения
- •Примеры использования обработчиков завершения
- •Funcenstein1
- •Funcenstein2
- •Funcenstein3
- •Funcfurter1
- •Проверьте себя: FuncaDoodleDoo
- •Funcenstein4
- •Funcarama1
- •Funcarama2
- •Funcarama3
- •Funcarama4: последний рубеж
- •И еще о блоке finally
- •Funcfurter2
- •Программа-пример SEHTerm
- •ГЛАВА 24 Фильтры и обработчики исключений
- •Примеры использования фильтров и обработчиков исключений
- •Funcmeister1
- •Funcmeister2
- •EXCEPTION_EXECUTE_HANDLER
- •Некоторые полезные примеры
- •Глобальная раскрутка
- •Остановка глобальной раскрутки
- •EXCEPTION_CONTINUE_EXECUTION
- •Будьте осторожны с EXCEPTION_CONTINUE_EXECUTION
- •EXCEPTION_CONTINUE_SEARCH
- •Функция GetExceptionCode
- •Функция GetExceptionlnformation
- •Программные исключения
- •ГЛАВА 25 Необработанные исключения и исключения С++
- •Отладка по запросу
- •Отключение вывода сообщений об исключении
- •Принудительное завершение процесса
- •Создание оболочки вокруг функции потока
- •Создание оболочки вокруг всех функций потоков
- •Автоматический вызов отладчика
- •Явный вызов функции UnhandledExceptionFilter
- •Функция UnhandledExceptionFilter изнутри
- •Исключения и отладчик
- •Программа-пример Spreadsheet
- •Исключения С++ и структурные исключения
- •Перехват структурных исключений в С++
- •ЧАСТЬ VI ОПЕРАЦИИ С ОКНАМИ
- •ГЛАВА 26 Оконные сообщения
- •Очередь сообщений потока
- •Посылка асинхронных сообщений в очередь потока
- •Посылка синхронных сообщений окну
- •Пробуждение потока
- •Флаги состояния очереди
- •Алгоритм выборки сообщений из очереди потока
- •Пробуждение потока с использованием объектов ядра или флагов состояния очереди
- •Передача данных через сообщения
- •Программа-пример CopyData
- •ГЛАВА 27 Модель аппаратного ввода и локальное состояние ввода
- •Поток необработанного ввода
- •Локальное состояние ввода
- •Ввод с клавиатуры и фокус
- •Управление курсором мыши
- •Подключение к очередям виртуального ввода и переменным локального состояния ввода
- •Программа-пример LISLab
- •Программа-пример LISWatch
моих примерах могут отличаться от применяемых в других компиля торах, по основные концепции SEH везде одинаковы В этой главе я использую син таксис компиляюра
Microsoft Visual C++
NOTE:
Не путайте SEH с обработкой исключении в С++, которая представляет собой еще одну форму обработки исключений, построенную на применении ключе вых слов языка С++ catch и throw При этом Microsoft Visual C++ использует пре имущества поддержки SEH, уже обеспеченной компилятором и операционны ми сиоемдми
Windows.
SEH предоставляет две основные возможности, обработку завершения (termination handling) и обработку исключений (exception handling). B этой главе мы рассмотрим обработку завершения.
Обработчик завершения гарантирует, что блок кода (собственно обработчик) будет выполнен независимо от того, как происходит выход из другого блока кода — защищенного участка программы. Синтаксис обработчика завершения при работе с компилятором Microsoft Visual C++ выглядит так:
__try
{
// защищенный блок
}
_finally
{
// обработчик завершения
}
Ключевые слова _try и __flnally обозначают два блока обработчика завершения, В предыдущем фрагменте кода совместные действия операционной системы и ком пилятора гарантируют, что код блока finаllу обработчика завершения будет выполнен независимо от того, как произойдет выход из защищенного блока. И неважно, разме стите Вы в защищенном блоке операторы return, goto или даже longjump — обработ чик завершения все равно будет вызван. Далее я покажу Вам несколько примеров ис пользования обработчиков завершения
Примеры использования обработчиков завершения
Поскольку при использовании SEH компилятор и операционная система вместе кон тролируют выполнение Вашего кода, то лучший, на мой взгляд, способ продемонст рировать работу SEH — изучать исходные тексты программ и рассматривать порядок выполнения операторов в каждом из примеров
Поэтому в следующих разделах приведен ряд фрагментов исходного кода, а свя занный с каждым из фрагментов тект поясняет, как компилятор и операционная система изменяют порядок выполнения кода.
Funcenstein1
Чтобы оценить последствия применения обработчиков завершения, рассмотрим бо лее конкретный пример:
DWORD Funcenstein1()
{
DWORD dwTemp;
// 1 Что-то делаем здесь
__try
{
//2. Запрашиваем разрешение на доступ
//к защищенным данным, а затем используем их
WaitForSingleObject(g_hSem, INFINITE); g_dwProtectedData = 5;
dwTemp = g_dwProtectedData;
}
_finally
{
//3 Даем и другим попользоваться защищенными данными
ReleaseSemaphore(g_hSem, 1, NULL);
}
//4 Продолжаем что-то делать
return(dwTemp);
}
Пронумерованные комментарии подсказывают, в каком порядке будет выполнять ся этот код. Использование в Funcemtein1 блоков try-finally на самом деле мало что дает. Код ждет освобождения семафора, изменяет содержимое защищенных данных, сохраняет новое значение в локальной переменной divTemp, освобождает семафор и возвращает повое значение тому, кто вызвал эту функцию.
Funcenstein2
Теперь чуть-чуть изменим код функции и посмотрим, что получится:
DWORD Funcenstein2()
{
DWORD dwTemp;
// 1 Что-то делаем здесь
...
__try
{
//2 Запрашиваем разрешение на доступ
//к защищенным данным, а затем используем их
WaitForSingleObject(g_nSem, INFINITE);
g_dwProtectedData = 5; dwTemp = g_dwProlecledData;
// возвращаем новое значение return(dwTemp);
}
_finally
{
// 3 Даем и другим попользоваться защищенными данными
ReleaseSemaphore(g_hSem, 1, NULL);
}
//продолжаем что-то делать - в данной версии
//этот участок кода никогда не выполняется dwTemp = 9; return(dwTemp);
}
Вконец блока try в функции Funcenstein2 добавлен оператор retum Он сообща ет компилятору, что Вы хотите выйти из функции и вернуть значение переменной dwTemp (в данный момент равное 5). Но, если будет выполнен return, текущий поток никогда не освободит семафор, и другие потоки не получат шанса занять этот сема фор. Такой порядок выполнения грозит вылиться в действительно серьезную пробле му ведь потоки, ожидающие семафора, могут оказаться не в состоянии возобновить свое выполнение.
Применив обработчик завершения, мы не допустили преждевременного выпол нения оператора return Когда return пытается реализовать выход из блока try, компилятор проверяет, чтобы сначала был выполнен код в блоке finally, — причем до того, как оператору return в блоке try будет позволено реализовать выход из функции Вы зов ReleaseSemaphore в обработчике завершения (в функции Funcenstein2) гаранти рует освобождение семафора — поток не сможет случайно сохранить права на се мафор и тем самым лишить процессорного времени все ожидающие этот семафор потоки.
После выполнения блока finаllу функция фактически завершает работу Любой код за блоком finally не выполняется, поскольку возврат из функции происходит внутри блока try. Так что функция возвращает 5 и никогда — 9
Каким же образом компилятор гарантирует выполнение блок finally до выхода из блока try? Дело вот в чем. Просматривая исходный текст, компилятор видит, что Вы вставили return внутрь блока try Тогда он генерирует код, который сохраняет воз вращаемое значение (в нашем примере 5) в созданной им же временной перемен ной Затем создаст код для выполнения инструкций, содержащихся внутри блока finally, — это называется локальной раскруткой (local unwind) Точнее, локальная рас крутка происходит, когда система выполняет блок finаllу из-за преждевременною выхода из блока try Значение временной переменной, сгенерированной компилято ром, возвращается из функции после выполнения инструкций в блоке finаllу
Как видите, чтобы все это вытянуть, компилятору приходится генерировать допол нительный код, а системе — выполнять дополнительную работу На разных типах процессоров поддержка обработчиков завершения реализуется по-разному Напри мер, процессоруА1рhа понадобится несколько сотен или даже тысяч машинных ко манд, чтобы перехватить преждевременный возврат из try и вызвать код блока finаllу Поэтому лучше не писать код, вызывающий преждевременный выход из блока try обработчика завершения, — это может отрицательно сказаться на быстродействии программы. Чуть позже мы обсудим ключевое слово _leave, которое помогает избе жать написания кода, приводящего клокальной раскрутке.
Обработка исключений предназначена для перехвата тех исключений, которые происходят не слишком часто (в нашем случае — преждевременного возврата). Если же
какое-то исключение — чуть ли не норма, гораздо эффективнее проверять его явно, не полагаясь на SEH
Заметьте: когда поток управления выходит из блока try естественным образом (как в Funcensfetn1), издержки от вызова блока finally минимальны При использовании компилятора Microsofr на процессорах x86 для входа finаllу при нормальном выхо де из try исполняется всего одна машинная команда — вряд ли Вы заметите ее влия ние на быстродействие своей программы Но издержки резко возрастут, ссли компи лятору придется генерироватьдополнительный код, а операционной системе — вы полнять дополншельную работу, как в Funcenstetn2
Funcenstein3
Снова изменим код функции:
DWORD Funcenstein3()
{
DWORD dwTemp;
// 1 Что-то делаем здесь
__try
{
//2. Запрашиваем разрешение на доступ
//к защищенным данным, а затем используем их
WaitForSingleObject(g_hSem, INFINITE);
g_dwProtectedData = 5; dwTemp = g_dwProtectedData;
// пытаемся перескочить через блок finally goto ReturnValue:
}
__finally
{
// 3. Даем и другим попользоваться защищенными данными
ReleaseSemaphore(g_hSem, 1, NULL);
}
dwTemp = 9;
// 4. Продолжаем что-то делать
ReturnValue:
return(dwTemp);
}
Обнаружив в блоке try функции Funcenstein3 оператор gofo, компилятор генери рует код для локальной раскрутки, чтобы сначала выполнялся блок finаllу . Но на этот раз после finаllу исполняется код, расположенный за меткой RetumValue, так как воз врат из функции не происходит ни в блоке try, ни в блоке finally. B итоге функция возвращает 5. И опять, поскольку Бы прервали естественный ход потока управления из try в finally,
