- •1.Электролиты. Растворы электролитов. Электролитическая диссоциация кислот оснований и солей. Константа диссоциации. Степень диссоциации.
- •2 .Ионное произведение воды. Водородный показатель среды, его расчет для сильных и слабых электролитов. Индикаторы.
- •3. Гидролиз солей.
- •4.Равновесие между ионами в растворе и твёрдой фазой .Произведение растворимости.
- •5.Образование простейших комплексов и растворах. Координационное число. Константа устойчивости.
- •6.Коллоидные растворы. Строение коллоидных растворов. Золи , гели и твёрдые коллоиды. Методы изучения коллоидных растворах. Свойства и применение коллоидных растворов.
- •7. Классификация и номенклатура неорганических соединений.
- •8.Свойства кислот, оснований и солей в свете теории электролитической диссоциации Арркниуса. Ионные уравнения реакций.
- •9. Оксид: классификация, получение, хим.Свойства.
- •10. Кислоты: классификация, получение, хим.Свойства.
- •11. Основания: классификация, получение, хим.Свойства. Щелочи.
- •12. Водород. Изотопы водорода. Соединения водорода с металлами и неметаллами. Вода, пероксид водорода.
- •13. Положение металлов в периодической системе химических элементов. Общее в строении атомов металлов. Металлическая связь. Применение металлов и их сплавов в авиации.
- •14. Общие способы получения металлов. Характерные химические свойства металлов. Электрохимический ряд напряжений металлов.
- •15. Коррозия металлов и ее виды. Защита металлов от коррозии.
- •16. Щелочные металлы: получение и химические свойства. Оксиды, пероксиды, гидроксиды и соли щелочных металлов.
- •17. Щелочноземельные металлы: получение и хим. Свойства. Их оксиды, гидроксиды, соли.
- •18. Щелочноземельные металлы: бериллий, магний, кальций. Жесткость воды и способы ее устранения.
- •19. Алюминий. Оксиды и гидроксиды алюминия. Применение алюминия и его сплавов.
- •20. Химия переходных металлов. Хром и его соединения.
- •21. Химия переходных металлов. Марганец и его соединения.
- •22. Химия переходных металлов. Железо и его соединения.
- •23. Химия переходных металлов. Медь и его соединения.
- •24. Химия переходных металлов. Цинк и его соединения.
- •25. Химия переходных металлов. Серебро и его соединения.
- •26. Галогены: характеристика, получение, химические свойства. Галогеноводороды. Галогениды. Кислородосодержащие соединения галогенов.
- •27. Подгруппа кислорода. Кислород, изотопы кислорода. Оксиды и пероксиды. Озон.
- •28. Подгруппа кислорода. Сера. Сероводород. Оксиды серы. Сернистая и серная кислоты и их соли.
- •29. Подгруппа азота. Азот. Амиак, соли аммнони, амиды металлов, нитриды. Оксиды азота.
- •30. Азотистая и азотная кислота и их соли. Эфиры азотной кислоты. Взаимодействие азотной кислоты с металлами и неметаллами.
- •31. Подгруппа азота. Фосфор. Оксиды фосфора и фосфорные кислоты.
- •32. Подгруппа углерода. Углерод и его свойства. Оксиды углерода. Угольная кислота и его соли. Карбиды: кальция, алюминия, железа.
- •34. Классификация органических соединений.
- •35. Номенклатура органических соединений (международная, рациональная, тривиальная). Правила названия веществ по систематической номенклатуре. Распределение функциональных групп по старшинству.
- •36. Изомерия органических соединений. Типы изомерии ( с примерами).
- •37. Классификация реагентов и реакций в органической химии.
- •39. Предельные углеводороды (алканы), их электронное и пространственное строение. Номенклатура и изомерия. Физические свойства. Важнейшие представители. Предельные углеводороды в природе.
- •40. Алканы. Получение и химические свойства.
- •41. Представление о циклоалканах. Получение химические свойства циклоалканах.
- •42. Этиленовые углеводороды (алкены), их электронное и пространственное строение. Номенклатура, изомерия, получение химические свойства алкенов. Правило Марковникова.
- •43. Диеновые углеводороды (алкадиены): особенности химических свойств сопряженных диенов. Важнейшие представители. Получение и применение в промышленности.
- •44. Ацетиленовые углеводороды, их электронное и пространственное строение, номенклатура.
- •45. Ароматические углеводороды (арены). Бензол, электронное и пространственное строение. Промышленное получение и применение бензола. Гомологи бензола.
- •46. Спирты первичные, вторичные, третичные. Номенклатура, строение, химические свойства и получение одноатомных спиртов. Промышленные методы синтеза этанола.
- •47. Классификация спиртов. Многоатомные спирты (этиленгликоль, глицерин), их особенности.
- •48. Простые эфиры: характеристика, получение, химические свойства. Сравнение их свойств со свойствами изомерных им спиртов.
- •1. Реакции с участием гидроксильной группы
- •2. Реакции с участием бензольного кольца
- •50. Альдегиды. Номенклатура, строение, физические и химические свойства. Особенности карбонильной группы. Муравьиный и уксусный альдегиды, получение, применение.
- •51. Кетоны: характеристика, получение, химические свойства. Ацетон.
- •52. Карбоновые кислоты. Номенклатура, строение, физические и химические свойства. Строение карбоксильной группы, взаимное влияние карбоксильной группы и углеводородного радикала.
- •56. Галогенпроизводные углеводородов: получение, химическиес свойства, применение. Важнейшие представители.
- •57. Амины: классификация и номенклатура. Получение, химические свойства, важнейшие представители.
- •58. Реакции полимеризации и поликонденсации. Важнейшие физико-химические свойства полимеров. Классификация полимерных соединений.
- •59. Пластические массы, их применение. Элементорганические полимерные соединения. Каучуки.
- •60. Химические волокна (искусственные, синтетические). Поверхностные покрытия и клеи.
58. Реакции полимеризации и поликонденсации. Важнейшие физико-химические свойства полимеров. Классификация полимерных соединений.
Полимеризация — процесс образования высокомолекулярного вещества (полимера) путём многократного присоединения молекул низкомолекулярного вещества (мономера, олигомера) к активным центрам в растущей молекуле полимера. Молекула мономера, входящая в состав полимера, образует так называемое мономерное (структурное) звено. Элементный состав (молекулярные формулы) мономера и полимера приблизительно одинаков
nСН2=СН2 + nСН2=СН2 → (-СН2 - СН2 - СН2 - СН2 -)n → (- СН2 - СН2 -)n ,
полиэтилен где n – степень полимеризации
Поликонденсация — процесс синтеза полимеров из полифункциональных (чаще всего бифункциональных) соединений, обычно сопровождающийся выделением низкомолекулярных побочных продуктов (воды, спиртов и т. п.) при взаимодействии функциональных групп.
Молекулярная масса полимера, образовавшегося в процессе поликонденсации, зависит от соотношения исходных компонентов, условий проведения реакции.
В общем виде процесс поликонденсации можно изобразить следующей схемой:
nX-R-X+nY-R'-Y->X-(R-R'-)n->Y+(2n-1)XY
где R и R'-радикалы; Х и У- функциональные группы.
===Полиме́ры (греч. πολύ- — много; μέρος — часть) — неорганические и органические, аморфные и кристаллические вещества, состоящие из «мономерных звеньев», соединённых в длинные макромолекулы химическими или координационными связями. Полимер — это высокомолекулярное соединение: количество мономерных звеньев в полимере (степень полимеризации) должно быть достаточно велико (в ином случае соединение будет называться олигомером). Во многих случаях количество звеньев может считаться достаточным, чтобы отнести молекулу к полимерам, если при добавлении очередного мономерного звена молекулярные свойства не изменяются.[1] Как правило, полимеры — вещества с молекулярной массой от нескольких тысяч до нескольких миллионов. В строении полимера можно выделить мономерное звено — повторяющийся структурный фрагмент, включающий несколько атомов. Полимеры состоят из большого числа повторяющихся группировок (звеньев) одинакового строения, например поливинилхлорид (—СН2—CHCl—)n, каучук натуральный и др. Высокомолекулярные соединения, молекулы которых содержат несколько типов повторяющихся группировок, называют сополимерами или гетерополимерами.
По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.
Органические полимеры.
Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.
Следует отметить, что в технике полимеры часто используются как компоненты композиционных материалов, например, стеклопластиков. Возможны композиционные материалы, все компоненты которых - полимеры (с разным составом и свойствами).
По форме макромолекул полимеры делят на линейные, разветвлённые (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.
К физическим свойствам полимеровотносят набухание, механические и электрические свойства.
Строго говоря, при взаимодействии полимеров с растворителями происходит физико-химический процесс набухания. Набухание– это самопроизвольный процесс поглощения полимером растворителя (низкомолекулярной жидкости), сопровождающийся увеличением массы и объема полимера. Процесс набухания может перейти в полное растворение, которое зависит от природы полимера и растворителя.
