- •1.Электролиты. Растворы электролитов. Электролитическая диссоциация кислот оснований и солей. Константа диссоциации. Степень диссоциации.
- •2 .Ионное произведение воды. Водородный показатель среды, его расчет для сильных и слабых электролитов. Индикаторы.
- •3. Гидролиз солей.
- •4.Равновесие между ионами в растворе и твёрдой фазой .Произведение растворимости.
- •5.Образование простейших комплексов и растворах. Координационное число. Константа устойчивости.
- •6.Коллоидные растворы. Строение коллоидных растворов. Золи , гели и твёрдые коллоиды. Методы изучения коллоидных растворах. Свойства и применение коллоидных растворов.
- •7. Классификация и номенклатура неорганических соединений.
- •8.Свойства кислот, оснований и солей в свете теории электролитической диссоциации Арркниуса. Ионные уравнения реакций.
- •9. Оксид: классификация, получение, хим.Свойства.
- •10. Кислоты: классификация, получение, хим.Свойства.
- •11. Основания: классификация, получение, хим.Свойства. Щелочи.
- •12. Водород. Изотопы водорода. Соединения водорода с металлами и неметаллами. Вода, пероксид водорода.
- •13. Положение металлов в периодической системе химических элементов. Общее в строении атомов металлов. Металлическая связь. Применение металлов и их сплавов в авиации.
- •14. Общие способы получения металлов. Характерные химические свойства металлов. Электрохимический ряд напряжений металлов.
- •15. Коррозия металлов и ее виды. Защита металлов от коррозии.
- •16. Щелочные металлы: получение и химические свойства. Оксиды, пероксиды, гидроксиды и соли щелочных металлов.
- •17. Щелочноземельные металлы: получение и хим. Свойства. Их оксиды, гидроксиды, соли.
- •18. Щелочноземельные металлы: бериллий, магний, кальций. Жесткость воды и способы ее устранения.
- •19. Алюминий. Оксиды и гидроксиды алюминия. Применение алюминия и его сплавов.
- •20. Химия переходных металлов. Хром и его соединения.
- •21. Химия переходных металлов. Марганец и его соединения.
- •22. Химия переходных металлов. Железо и его соединения.
- •23. Химия переходных металлов. Медь и его соединения.
- •24. Химия переходных металлов. Цинк и его соединения.
- •25. Химия переходных металлов. Серебро и его соединения.
- •26. Галогены: характеристика, получение, химические свойства. Галогеноводороды. Галогениды. Кислородосодержащие соединения галогенов.
- •27. Подгруппа кислорода. Кислород, изотопы кислорода. Оксиды и пероксиды. Озон.
- •28. Подгруппа кислорода. Сера. Сероводород. Оксиды серы. Сернистая и серная кислоты и их соли.
- •29. Подгруппа азота. Азот. Амиак, соли аммнони, амиды металлов, нитриды. Оксиды азота.
- •30. Азотистая и азотная кислота и их соли. Эфиры азотной кислоты. Взаимодействие азотной кислоты с металлами и неметаллами.
- •31. Подгруппа азота. Фосфор. Оксиды фосфора и фосфорные кислоты.
- •32. Подгруппа углерода. Углерод и его свойства. Оксиды углерода. Угольная кислота и его соли. Карбиды: кальция, алюминия, железа.
- •34. Классификация органических соединений.
- •35. Номенклатура органических соединений (международная, рациональная, тривиальная). Правила названия веществ по систематической номенклатуре. Распределение функциональных групп по старшинству.
- •36. Изомерия органических соединений. Типы изомерии ( с примерами).
- •37. Классификация реагентов и реакций в органической химии.
- •39. Предельные углеводороды (алканы), их электронное и пространственное строение. Номенклатура и изомерия. Физические свойства. Важнейшие представители. Предельные углеводороды в природе.
- •40. Алканы. Получение и химические свойства.
- •41. Представление о циклоалканах. Получение химические свойства циклоалканах.
- •42. Этиленовые углеводороды (алкены), их электронное и пространственное строение. Номенклатура, изомерия, получение химические свойства алкенов. Правило Марковникова.
- •43. Диеновые углеводороды (алкадиены): особенности химических свойств сопряженных диенов. Важнейшие представители. Получение и применение в промышленности.
- •44. Ацетиленовые углеводороды, их электронное и пространственное строение, номенклатура.
- •45. Ароматические углеводороды (арены). Бензол, электронное и пространственное строение. Промышленное получение и применение бензола. Гомологи бензола.
- •46. Спирты первичные, вторичные, третичные. Номенклатура, строение, химические свойства и получение одноатомных спиртов. Промышленные методы синтеза этанола.
- •47. Классификация спиртов. Многоатомные спирты (этиленгликоль, глицерин), их особенности.
- •48. Простые эфиры: характеристика, получение, химические свойства. Сравнение их свойств со свойствами изомерных им спиртов.
- •1. Реакции с участием гидроксильной группы
- •2. Реакции с участием бензольного кольца
- •50. Альдегиды. Номенклатура, строение, физические и химические свойства. Особенности карбонильной группы. Муравьиный и уксусный альдегиды, получение, применение.
- •51. Кетоны: характеристика, получение, химические свойства. Ацетон.
- •52. Карбоновые кислоты. Номенклатура, строение, физические и химические свойства. Строение карбоксильной группы, взаимное влияние карбоксильной группы и углеводородного радикала.
- •56. Галогенпроизводные углеводородов: получение, химическиес свойства, применение. Важнейшие представители.
- •57. Амины: классификация и номенклатура. Получение, химические свойства, важнейшие представители.
- •58. Реакции полимеризации и поликонденсации. Важнейшие физико-химические свойства полимеров. Классификация полимерных соединений.
- •59. Пластические массы, их применение. Элементорганические полимерные соединения. Каучуки.
- •60. Химические волокна (искусственные, синтетические). Поверхностные покрытия и клеи.
40. Алканы. Получение и химические свойства.
Алканы (парафины) – алифатические (нециклические) предельные углеводороды, в которых атомы углерода связаны между собой простыми (одинарными) связями в неразветвленные или разветвленные цепи.
Алканы имеют общую формулу CnH2n+2, где n – число атомов углерода.
(i) Алканы – название предельных углеводородов по международной номенклатуре.
Парафины – исторически сложившееся название, отражающее свойства этих соединений (от лат. parrum affinis – малоактивный).
Предельными, или насыщенными, эти углеводороды называют в связи с полным насыщением углеродной цепи атомами водорода.
Химические св-ва.
Алканы химически малоактивны. Низкая реакционная способность алканов обусловлена очень малой полярностью связей С-С и С-Н в их молекулах вследствие почти одинаковой электроотрицательности атомов углерода и водорода. Предельные углеводороды в обычных условиях не взаимодействуют ни с концентрированными кислотами, ни со щелочами, ни даже с таким активным реагентом как перманганат калия.
Для них свойственны реакции замещения водородных атомов и расщепления.
В этих реакциях происходит гомолитическое расщепление кoвалентных связей, т. е. они осуществляются по свободно-радикальному (цепному) механизму.
Реакции вследствие прочности связей C–C и C–H протекают или при нагревании, или на свету, или с применением катализаторов.
41. Представление о циклоалканах. Получение химические свойства циклоалканах.
Циклоалканы – циклические углеводороды с простыми связями и общей формулой Сn Н2 n. Циклоалканы входят в состав нефти.
Химические свойства циклоалканов . Циклоалканы по свойствам сходны с алканами: малоактивны, горючи, атомы водорода в них могут замещаться галогенами.
1. Окисление. Циклоалканы горят, не обесцвечивают KMnO4
С4Н8 + 6О2→4СО2 + 4Н2О
2. Реакции замещения – галогенирование:
Практическое значение: циклоалканы входят в состав нефтепродуктов (топливо), используются как растворители органических веществ, из них получают ароматические углеводороды.
Получение циклоалканов:
-из линейных соединений — алканов:
Запомните правило — циклизация любых линейных соединений состоит из этапов:
1) активация цепи с двух концов: СH2Cl — CH2 — CH2Cl
2) замыкание в цикл дегалогенированием: СH2Cl — CH2 — CH2Cl + Zn = C3H6 + ZnCl2
-из ароматических соединений гидрированием: С6H6 +3H2 = С6H12
42. Этиленовые углеводороды (алкены), их электронное и пространственное строение. Номенклатура, изомерия, получение химические свойства алкенов. Правило Марковникова.
Алкены, или олефины — алифатические ненасыщенные углеводороды, содержащие в
молекулах одну двойную связь. Простейшим представителем алкенов является
этилен С2Н4, в связи, с чем соединения этого ряда называются также углеводородами ряда этилена.
Алкены образуют гомологический ряд с общей формулой CnH2n.
СnH2n алкен |
Названия, суффикс ЕН, ИЛЕН |
C2Н4 |
этен, этилен |
C3H6 |
Пропен |
C4H8 |
Бутен |
C5H10 |
Пентен |
C6H12 |
гексен |
СH2=CH2 этен
СH2=CH-CH3 пропен
СH2=CH-CH2-CH3 бутен-1
СH2=CH-CH2-CH2-СН3 пентен-1
Номенклатура
Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан — этилен, пропан — пропилен и т.д.
По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:
(Н2С=СН— ) винил или этенил
(Н2С=CН—СН2 ) аллил
Изомерия
Для алкенов характерна структурная изомерия: различия в разветвлении цепи и в положении двойной связи, а также пространственная изомерия (цис- и трансизомеры).
Структурная изомерия алкенов
Изомерия углеродного скелета (начиная с С4Н8):
Изомерия положения двойной связи (начиная с С4Н8):
Межклассовая изомерия с циклоалканами, начиная с С3Н6:
Тривиальные названия олефинов характеризуются добавлением окончания илен: этилен, пропилен и т.д., большое количество алкенов образуется при крекинге и пиролизе нефти. Другой важный способ –
дегидрирование алканов (Cr2O3, t=450°–460°). Лабораторными способами получения является дегидратация спиртов и дегидрогалогенирование.
1. CH2=CH2 + Cl2 → CH2Cl–CH2Cl
2. CH3–CH=CH2 + HBr → CH3–CHBr–CH3
3. CH2=CH2 + H2O → CH3–CH2OH
4. CH2=CH2 + H2 → CH3–CH3 (Pt)
5. 3СН2=CH2 + 2KMnO4 + 4H2O → 3HOCH2CH2OH + 2MnO2 + 2КОН
Этилен является одним из важнейших полупродуктов для промышленности органического синтеза. Многие вещества, получаемые непосредственно из этилена, имеют практическое применение или используются для дальнейших синтезов. Пропилен используется для производства изопропилового спирта, ацетона, глицерина, полипропилена. Изобутилен используется для синтеза изооктана, полиизобутилена. Бутилены применяются для получения бутадиена – продукта для получения синтетического каучука.
