- •2.Дайте характеристику задньої долі гіпофізу за схемою : місце утворення,хімічна природа,регуляція секреції,біохімічні ефекти,механізм дії.
- •3.Дайте характеристику тироксину і тройодтироніну за схемою : місце утворення,хімічна природа,регуляція секреції,біохімічні ефекти,механізм дії.
- •4.Дайте характеристику кальцитоніну і паратгормону за схемою :місце утворення,хімічна природа,регуляція секреції,біохімічні ефекти,механізм дії.
- •5.Дайте характеристику інсуліну за текою схемою: місце утворення,хімічна природа,регуляція секреції,біологічний ефект,механізм дії.
- •6.Дайте характеристику глюкагону за схемою: місце утворення,хімічна природа,регуляція секреції,біологічний уфект,механізм дії.
- •7.Дайте характеристику адреналін за такою схемою: місце утворення,хімічна природа,регуляція секреції,біологічний уфект,механізм дії.
- •8. Дайте характеристику глюкокортикоїдів за схемою: місце утворення,хімічна природа,регуляція секреції,біологічний ефект,механізм дії.
- •10.Дайте характеристику тестостерону за схемою: місце утворення, хімічна природа, регуляція секреції, біохімічні ефекти, механізм дії.
- •11.Дайте характеристику естрогенам за схемою: місце утворення, хімічна природа, регуляція секреції, біохімічні ефекти, механізм дії.
- •12.Дайте характеристику простагландинам за схемою: місце утворення, хімічна природа, регуляція секреції, біохімічні ефекти, механізм дії.
- •13.Дайте характеристику лейкотрієнам за схемою: місце утворення, хімічна природа, регуляція секреції, біохімічні ефекти, механізм дії.
- •14.Дайте характеристику ренін-ангіотензиновій системі за схемою: місце утворення, хімічна природа, регуляція секреції, біохімічні ефекти.
- •15.Дайте характеристику вітаміну а за схемою: провітаміни, хімічна природа, біохімічні ефекти, гіповітаміноз.
- •16.Дайте характеристику вітаміну д за схемою: провітаміни, хімічна природа, біохімічні ефекти, гіповітаміноз.
- •17.Дайте характеристику вітаміну е за схемою: провітаміни, хімічна природа, біохімічні ефекти, гіповітаміноз.
- •18.Дайте характеристику вітаміну к за схемою: провітаміни, хімічна природа, біохімічні ефекти, гіповітаміноз.
- •28. Синтез гемоглобіну, регуляція та порушення.
- •I.Синтез гему
- •II.Cинтез 2 –альфа і 2-бета ланцюгів глобіну звичайним шляхом на рибосомах
- •III.Зв*язування гему з білком.
- •29. Роль печінки в обміні вуглеводів.
- •30. Катаболізм гемоглобіну, знешкодження кінцевих продуктів
- •31.Роль печінки в обміні ліпідів.
- •Окиснення жирних кислот до со2 і н2о.
- •Утворення кетонових тіл.
- •Утворення жирних кислот і жирів (ліпогенез) із ацетил-КоА.
- •Синтез холестерину з ацетил-КоА
- •32. Роль печінки в обміні амінокислот.
- •33. Шляхи знешкодження токсичних речовин у печінці
- •34. Колаген: особливості будови, посттрансляційні модифікації, катаболізм, функції.
- •35. Протеоглікани сполучної тканини: склад, структура, функції.
31.Роль печінки в обміні ліпідів.
У пецінці активно відбуваються більшість ферментативних реакцій синтезу і розпаду різних класів ліпідів-жирних кислот, ацилгліцеролів,холестерину,фосфо-,гліколіпідів.
Вільні жирні кислоти потрапляють у кров і у вигляді комплексів з альбуміном плазми розносяться до інших органів і тканин. До 50 % цих жирних кислот можуть поглинатись печінкою і використовуватись для окиснення до СО2 і Н2О, утворення кетонових тіл або синтезу триацилгліцеринів, фосфоліпідів і ефірів холестерину .
Окиснення жирних кислот до со2 і н2о.
Утворення кетонових тіл.
Кетонові тіла утворюються у печінці, звідки переносяться кров'ю до периферичних тканин, де використовуються як джерело енергії. Окиснення кетонових тіл відбувається у скелетних м'язах, міокарді, нирках і навіть у мозку. В цих тканинах є ферменти, які перетворюють ацетооцтову і в-гідроксимасляну кислоти в ацетил-КоА (тобто використання кетонових тіл проходить у циклі Кребса). У самій печінці ферменти активації ацетооцтової кислоти відсутні, тому кетонові тіла там не утилізуються.
Утворення жирних кислот і жирів (ліпогенез) із ацетил-КоА.
У печінці більш інтенсивно, ніж у позапечінкових тканинах, відбуваються реакції подовження ланцюга жирних кислот й утворення мононенасичених жирних кислот із насичених. Таким чином, у печінці утворюється властивий даному виду набір жирних кислот.
Новосинтезовані жирні кислоти, а також жирні кислоти, які потрапили у печінку із хіломікронів під час травлення жирів їжі, та жирні кислоти, звільнені із жирових депо при мобілізації жирів, використовуються в гепатоцитах для синтезу жирів, фосфоліпідів, ефірів холестерину, або окиснюються .
У печінці може зберігатись тільки обмежена кількість жирів (менше 1 % маси органа), а їх надлишок виводиться у кров у складі ЛПНГ. Останні надходять у капіляри позапечінкових тканин, де під дією ліпопротеїнліпази жири гідролізуються, і жирні кислоти утилізуються в клітинах.
Синтез холестерину з ацетил-КоА
Під час транспорту із печінки до інших тканин холестерин включається у ЛПНГ.ЛПНГ захоплюються клітинами різних тканин, де холестерин включається в склад мембран або використовується для утворення стероїдних гормонів чи вітаміну Д. Надлишок холестерину переноситься від позапечінкових тканин до печінки у складі ЛПВГ, частина холестерину в печінці йде на синтез жовчних кислот. Виводиться холестерин із печінки в складі жовчі у кишечник.
32. Роль печінки в обміні амінокислот.
Печінка займає ключову роль в обміні білків і амінокислот (рис. 20.10). У клітинах печінки, на відміну від інших органів, є повний набір ферментів, що беруть участь в амінокислотному обміні. Амінокислоти, що всмоктуються у кишечнику, потрапляють з кров'ю ворітної вени у печінку і використовуються тут в різних шляхах обміну:
синтез білків;
У печінці утворюється більшість білків плазми крові — 100 % альбуміну, близько 90 % ^-глобулінів, 75 % а2-глобулінів, 50 % в-глобулінів, фактори згортання крові, білки-компоненти ліпопротеїнів плазми крові, фермент холінестераза.
розпад до кінцевих продуктів;
амінокислоти втрачають аміногрупу в результаті прямого чи непрямого дезамінування, а утворені кетокислоти різними шляхами надходять у цикл лимонної кислоти. Після споживання білкової їжі окиснювальний розпад амінокислот служить основним джерелом енергії у печінці
перетворення у вуглеводи та ліпіди;
Вуглецеві скелети амінокислот можуть перетворюватись у вуглеводи, жирні кислоти, кетонові тіла. Деякі амінокислоти є глікогенними, інші — і глікогенними, і кетогенними, а виключно кетогенною є лейцин
взаємоперетворення амінокислот(глюкозо-аланіновий цикл між м'язами і печінкою)
перетворення у низькомолекулярні азотовмісні речовини;
Невелика кількість амінокислот перетворюється у печінці в низькомолекулярні азотовмісні речовини — пуринові і піримідинові нуклео- тиди, гем, креатин, нікотинову кислоту, холін, карнітин, поліаміни. Швидкість синтезу цих речовин із амінокислот визначається потребою в них організму, а не концентрацією необхідних амінокислот. Катаболізм пуринових і піримідинових нуклеотидів також здійснюється у печінці.
звільнення в кров і доставка до інших органів і тканин для синтезу там білків і низькомолекулярних азотових речовин.
