- •Разделы дисциплины и виды занятий в часах
- •Общая информация о курсе
- •Введение
- •Об авторах
- •Лекция 1. Краткое знакомство с моделью программирования xaml.
- •Краткий экскурс в историю графических интерфейсов пользователя
- •Windows Presentation Foundation – три в одном
- •Декларативное программирование ui и xaml
- •Основы модели ui и xaml
- •Элементы xaml
- •Элементы управления
- •Графические примитивы
- •Службы документов
- •Преобразования и анимация
- •Ресурсы и стили
- •Разделение труда дизайнера и разработчика
- •Xaml – текущая поддержка
- •Модель программирования xaml
- •Ключевые термины
- •Краткие итоги
- •Xaml подчиняется всем правилам wellformed xml, в частности это означает, что xaml документ:
- •Вариант 2 Задачи 3.
- •Вариант 2 Задачи 8.
- •Вариант 3 Задачи 8.
- •Xaml может использоваться для описания ui:
- •Xaml может использоваться:
- •Лабораторная работа 1. Размещение элементов управления.
- •Задания для самостоятельного выполнения
- •Учебный элемент. Создание нового проекта для Silverlight в VisualStudio 2010.
- •Шаг 1. Создание проекта
- •Шаг 2. Добавляем элементы интерфейса для xaml-страниц
- •Учебный элемент. Silverlight: размещение элементов.
- •Шаг 1. Принципы разметки
- •Шаг 2. Создаем Twitter-приложение
- •Шаг 3. Навигация
- •Шаг 4. Размещаем элементы для страницы поиска
- •Шаг 5. Изменяем UriMapper для Search.Xaml
- •Краткие итоги
- •Литература
- •Лекция 2. Сведения о wpf и Silverlight: Введение и архитектура платформ.
- •Независимость от разрешения
- •Архитектура Silverlight
- •Состав ядра представления:
- •В подмножество .Net Framework входят:
- •Архитектура wpf
- •Иерархия классов
- •Элементы управления wpf
- •Компоновочные элементы управления в системе wpf
- •Ключевые термины
- •Краткие итоги
- •Лекция 3. Стили и шаблоны элементов управления wpf.
- •Создание стиля
- •Использование стиля
- •Размещение стилей
- •Основы шаблонов
- •Создание шаблона
- •Повторное использование шаблона Control’а
- •Связывание в Шаблонах
- •Установка шаблонов через стили
- •Повторное использование настроек цвета
- •Ключевые термины
- •Краткие итоги
- •Вариант 2 Задачи 5.
- •Задания для самостоятельного выполнения
- •Учебный элемент. Стили и ресурсы в wpf
- •Шаг 1. Применение стиля в xaml документе
- •Шаг 2. Динамическое применение стилей в коде приложения
- •Поддержка множества целевых платформ
- •Клиентский профиль .Net
- •Визуальный конструктор Visual Studio
- •Графика Шейдеры
- •Кеширование графики
- •Новые функции для анимации
- •Усовершенствования двухмерной графики.
- •Поддержка Generics
- •Ключевые термины
- •Краткие итоги
- •Набор для практики
- •Литература
- •Лекция 5. Silverlight и wpf в Visual Studio 2010 (продолжение).
- •Новые возможности Silverlight 4. Silverlight 5: основные нововведения ожидаемого релиза. Хронология Silverlight
- •Связывание с данными Отладка
- •Поддержка Full-Trust внутри браузера
- •Обработка множественного нажатия кнопки мыши
- •Поддержка выбора элементов в ItemsControl с клавиатуры
- •Повышение полномочий для приложений в браузере
- •Поддержка нескольких окон
- •Доступ к файловой системе для приложений с повышенными привилегиями
- •Установка имени файла по умолчанию в SaveFileDialog
- •Улучшение работы с аудио
- •Изменение скорости проигрывания медиа
- •Поддержка пульта дистанционного управления
- •Работа с текстом
- •Отладка при связывании с данными
- •Улучшенная поддержка шаблона mvvm
- •Использование связывания в стилях
- •Неявные шаблоны
- •Другие изменения
- •Краткие итоги
- •Вариант 2 Задачи 2.
- •Вариант 2 Задачи 4.
- •Вариант 2 Задачи 6.
- •Вариант 3 Задачи 6.
- •Литература
- •Лекция 6. Привязка данных в технологиях wpf и Silverlight
- •Принципы работы с данными
- •Модель данных в .Net
- •Всепроникающее связывание
- •Преобразование данных
- •Ресурсы
- •Основные принципы связывания
- •Привязка к объектам clr
- •Редактирование
- •Ключевые термины
- •Вариант 2 Задачи 5.
- •Шаг 1. Создание повторно используемой функциональности
- •Устанавливаем стили для элементов управления
- •Двусторонняя привязка данных
- •Шаг 2. Добавление обработки событий клавиатуры
- •Шаг 3. Инкапсуляция разметки и логики в элемент управления UserControl
- •Реализация элемента управления
- •Добавление кода
- •Использование пользовательского элемента управления
- •Многократное использование
- •Шаг 1. Рефакторинг кода адресной формы
- •Код внутри класса AdressCustomControl
- •Определение свойств зависимости
- •Шаг 2. Рефакторинг кода разметки указателя цвета
- •Шаг 3. Оптимизация шаблона элемента управления
- •Манипулирование частями шаблона
- •Документирование частей шаблона
- •Ключевые термины
- •Вариант 2 Задачи 3.
- •Вариант 3 Задачи 3.
- •Задача 4. Вариант 1 Задачи 4.
- •Вариант 2 Задачи 4.
- •Вариант 3 Задачи 4.
- •Задача 5. Вариант 1 Задачи 5.
- •Вариант 2 Задачи 5.
- •Вариант 3 Задачи 5.
- •Задача 6. Вариант 1 Задачи 6.
- •Вариант 2 Задачи 6.
- •Вариант 3 Задачи 6.
- •Задача 7. Вариант 1 Задачи 7.
- •Вариант 2 Задачи 7.
- •Вариант 3 Задачи 7.
- •Литература
- •Лабораторная работа 3. Пользовательские элементы управления.
- •Задания для самостоятельного выполнения
- •Учебный элемент. Создание пользовательского элемента управления средствами дизайнера VisualStudio Шаг 1. Создание Silverlight проекта
- •Шаг 2. Создание пользовательского элемента управления
- •Шаг 5. Использование Custom Control
- •Учебный элемент. Создание пользовательского элемента управления средствами дизайнера Expression Blend
- •Шаг 1. Инкапсуляция ui в User Control
- •Шаг 2. Привязка адресов к нашему AddressUserControl – контроллеру.
- •Краткие итоги
- •Литература
- •Лекция 8. Использование событий, команд и триггеров в технологиях wpf и Silverlight
- •Принципиальные основы действий
- •Композиция элементов
- •Слабая связь
- •Декларативные действия
- •События
- •Команды
- •Команды и привязка к данным
- •Триггеры
- •Добавление триггеров к данным
- •Добавление триггеров к элементам управления
- •Вариант 2 Задачи 2.
- •Вариант 2 Задачи 6.
- •Вариант 2 Задачи 8.
- •Вариант 3 Задачи 8.
- •Литература
- •Лабораторная работа 4. Использование команд в технологиях wpf и Silverlight
- •Задания для самостоятельного выполнения
- •Учебный элемент. Использование стандартных и нестандартных команд Шаг 1. Использование стандартных команд.
- •Шаг 2. Использование нестандартных команд.
- •Шаг 3. Перевод команд из неактивного состояния в активное и обратно.
- •Краткие итоги
- •Литература
- •Лекция 9. Применение паттерна mvvm как оптимального при проектировании wpf и Silverlight приложений
- •Паттерн Model-View-ViewModel (mvvm)
- •Обязанности и характеристики классов.
- •Класс представления (View).
- •Класс модели представления (View Model).
- •Представление или Модель Представления?
- •Класс модели (Model).
- •Взаимодействие классов.
- •Привязка данных.
- •Реализация iNotifyPropertyChanged.
- •Реализация iNotifyCollectionChanged.
- •Реализация iCollectionView.
- •Команды.
- •Реализация Command Objects.
- •Подтверждение правильности данных и сообщение об ошибках.
- •Реализация iDataErrorInfo.
- •Создание и соединение.
- •Создание модели представления через xaml.
- •Создание модели представления программно.
- •Создание представления, определенного как шаблон данных.
- •Вариант 2 Задачи 1.
- •Вариант 3 Задачи 1.
- •Задача 2. Вариант 1 Задачи 2.
- •Вариант 2 Задачи 2.
- •Вариант 3 Задачи 2.
- •Задача 3. Вариант 1 Задачи 3.
- •Вариант 2 Задачи 3.
- •Вариант 2 Задачи 6.
- •Вариант 3 Задачи 6.
- •Задача 7. Вариант 1 Задачи 7.
- •Вариант 2 Задачи 7.
- •Вариант 3 Задачи 7.
- •Литература
- •Лабораторная работа 5. Реализация wpf проекта с помощью mvvm toolkit’а
- •Задания для самостоятельного выполнения
- •Учебный элемент. Реализация паттерна mvvm средствами Model-View-ViewModel Toolkit 0.1
- •Шаг 1. Постановка задачи
- •Шаг 4. Редактирование
- •Шаг 5. Команды
- •Краткие итоги
- •Литература
- •Лекция 10. Проектирование приложения с учетом использования единого опыта разработки для настольных и Web-проектов.
- •Подходы к решению задачи
- •Разработка кроссплатформенного проекта с самого начала
- •Разработка для одной платформы с последующим портированием на другую
- •Инструментарий
- •Создание ссылок на файлы в Visual Studio
- •Создание ссылок на xaml файлы
- •Директивы препроцессора
- •Разделяемые классы
- •Синхронное использование xaml
- •Решение проблем недостающего функционала Отсутствие FrameworkPropertyMetadata
- •Отсутствие приведения значения
- •Отсутствие метода OverrideMetadata()
- •Отсутствие зависимых свойств только для чтения
- •Отсутствие класса Brushes
- •Конструкторы по умолчанию для геометрий
- •Отсутствие свойства No PathSegment.IsStroked
- •Краткие итоги
- •Принцип инверсии зависимостей
- •Формы инверсии зависимостей
- •IoC контейнер
- •Определение моделей представления
- •Определение представлений
- •Сопоставление модели представления и представления
- •Реализация iNotifyPropertyChanged средствами аспектно-ориентированного программирования
- •Краткие итоги
- •IoC контейнер в mef инкапсулируется классом …
- •Понятие iChildViewModelManager
- •Реализация ChildViewModelBase
- •Реализация ModalChildViewModelBase
- •Реализация MessageViewModel
- •Краткие итоги
- •Литература Лабораторная работа 6. Построение кроссплатформенного Silverlight/wpf приложения.
- •Создание проектов
- •Краткие итоги
- •Список литературы
Формы инверсии зависимостей
Существует две формы инверсии зависимостей: активная и пассивная. Различие между ними состоит в том, как объект узнает о своих зависимостях во время выполнения.
При использовании пассивной формы зависимые объекты внедряются в зависимый. Зависимому объекту не надо прилагать никаких усилий, все нужные сервисы он получает через свой интерфейс.
Активная форма, в отличие от пассивной, предполагает, что зависящий объект будет сам получать свои зависимости при помощи вспомогательных объектов.
Каждая из форм инверсии зависимостей имеет подтипы, которые характеризуют детали связывания объектов между собой.
Пассивная инверсия зависимостей (Dependency Injection):
внедрение через конструктор: для ассоциирования объекта с конкретными реализациями абстракций используется конструктор. При использовании этого типа инверсии зависимостей необходимые объекты передаются в конструктор в качестве аргументов.
внедрение через устанавливаемое свойство: требуется определение отдельного свойства, имеющего set-метод, для каждого из инъецируемых объектов. От предыдущего типа инъекции она отличается местом инъекции. Следует отметить, что внедрение через конструктор и внедрение через устанавливаемое свойство не исключают друг друга.
внедрение через интерфейс: задаются интерфейсы, которые определяют методы для связывания, один интерфейс на каждую зависимость. Зависимый объект должен реализовывать все эти интерфейсы. Определяется также единый интерфейс для всех сервисов. Каждый сервис реализует этот интерфейс таким образом, чтобы внедрить себя в зависящий объект. Таким образом, сервисы сами внедряют себя в зависимый объект посредством установленного интерфейса.
внедрение через поле: в .NET и Java существует возможность получить доступ к private/protected полям объекта. Эта техника может быть использована для внедрения сервисов в зависящий объект напрямую, без использования set-методов и конструкторов.
Активная инверсия зависимостей (Dependency Lookup):
pull-подход: предполагается наличие в системе общедоступного объекта, который знает обо всех используемых сервисах. В качестве такого объекта может выступать объект, реализующий паттерн Service Locator. Локатор реализует паттерн синглетона, благодаря чему доступ к нему можно получить из любого места приложения.
push-подход: данная методика отличается от pull-подхода тем, как объект узнает об объекте-локаторе. При использовании pull-подхода класс сам получал локатор посредством класса-синглетона. Push-подход характеризуется тем, что объект-локатор (или как его иногда называют контекст) передается в класс извне (обычно через конструктор).
IoC контейнер
Очень важное понятие, связанное с инверсией зависимостей – это IoC контейнеры. IoC контейнер – это специальный объект-сборщик, который на основании схемы зависимостей между классами и абстракциями может создать граф объектов. Любой IoC контейнер реализует принцип инверсии зависимостей.
Одной из реализаций IoC контейнера является MEF. Это очень мощный проект, который затрагивает очень много аспектов конструирования ПО. Одним из таких аспектов является конструирование объектов на основании его связей. Причем связи между объектами могут задаваться в виде атрибутов и анализироваться в процессе выполнения приложения.
MEF
Библиотека MEF появилась относительно недавно, но быстро завоевала популярность у .NET разработчиков за простоту использования и эффективность. Она позволяет строить модульные приложения с минимальным уровнем связности частей (parts) приложения. Эта библиотека включает в себя не только Dependency Injection контейнер, но большой объём инфраструктуры: множество механизмов поиска элементов композиции в сборках, удалённых XAP файлах, механизм пометки элементов композиции с помощью .Net атрибутов и т.д. Также существует версия MEF для Silverlight, которая имеет незначительные отличия от настольной версии.
IoC контейнер в MEF инкапсулируется классом CompositionContainer. Он содержит каталог типов, доступных для инъектирования. Наиболее удобным каталогом является DirectoryCatalog, включающий в себя типы из всех сборок, найденных в папке с приложением:
1: CompositionContainer container =
2: new CompositionContainer(new DirectoryCatalog("."));
Для удовлетворения зависимостей определенного класса используется метод ComposeParts:
1: container.ComposeParts(this);
Стоит иметь в виду, что как и другие IoC контейнеры, перед передачей компоненты в качестве импорта MEF удовлетворяет все её зависимости.
Компоненты в MEF не зависят друг от друга напрямую, вместо этого они зависят от контракта, который указывается строковым идентификатором. Каждый компонент объявляет контракты, которые он реализует, а каждая зависимость указывает необходимый ей контракт.
Реализация какого-либо контракта в терминологии MEF называется экспортом. Экспорты задаются при помощи атрибута [System.ComponentModel.Composition.ExportAttribute]. Данным атрибутом помечается класс сервиса, реализующего контракт. В качестве аргумента в конструктор атрибута передается имя реализуемого контракта. Следующий пример определяет контракт ILogger и объект Logger, его реализующий:
1: public interface ILogger
2: {
3: void Log(string message);
4: }
5:
6: [Export(typeof(ILogger))]
7: public class Logger : ILogger
8: {
9: public void Log(string message)
10: {
11: Console.WriteLine(message);
12: }
13: }
Чтобы различать несколько реализаций одного контракта, в экспорте возможно указать его имя:
1: [Export("GUI", typeof(ILogger))]
2: public class Logger : ILogger
3: {
4: public void Log(string message)
5: {
6: MessageBox.Show(message);
7: }
8: }
В таком случае возможно как получить все реализации контракта ILogger, так и найти конкретную спецификацию, работающую с графическим интерфейсом, по ключевому слову GUI.
По умолчанию MEF работает по принципу пассивной инверсии зависимостей. Зависимости от компонент в терминологии MEF называются импортами. Импорты с внедрением через устанавливаемое свойство или поле задаются при помощи атрибута [System.ComponentModel.Composition.ImportAttribute].
1: public class Processor
2: {
3: [Import]
4: public ILogger Logger { private get; set; }
5:
6: public void Process()
7: {
8: Logger.Log("Hello world");
9: }
10: }
При внедрении через конструктор, этот конструктор помечается атрибутом [System.ComponentModel.Composition.ImportingConstructorAttribute].
1: public class Processor
2: {
3: [ImportingConstructor]
4: public Processor(ILogger logger)
5: {
6: _logger = logger;
7: }
8:
9: // Private fields
10: private ILogger _logger;
11:
12: public void Process()
13: {
14: _logger.Log("Hello world");
15: }
16: }
Обычно MEF определяет имя импортируемого контракта исходя из CLR типа свойства, поля или параметра конструктора (в зависимости от выбранного способа внедрения). Помимо этого существует возможность указать имя контракта вручную, через аргумент конструктора атрибута:
1: public class Processor
2: {
3: [Import("GUI")]
4: public ILogger Logger { private get; set; }
5:
6: public void Process()
7: {
8: Logger.Log("Hello world");
9: }
10: }
Помимо пассивной инверсии зависимостей при помощи MEF возможно реализовать активную инверсию зависимостей с использованием библиотеки CommonServiceLocator. Данная библиотека содержит обобщенный интерфейс для разрешения зависимостей, абстрагированный от конкретного IoC контейнера:
1: var locator = new MefServiceLocator(CompositionContainer);
2: ServiceLocator.SetLocatorProvider(() => locator);
MVVM и IoC
Легко заметить, что при помощи инверсии зависимостей возможно производить не только разрешение зависимостей между моделями представления и различными сервисами, но и сопоставлять представления и модели представления.
Здесь необходимо принять архитектурное решение, так как при разрешении зависимостей необходимо иметь в виду порядок создания объектов:
Конструировать модель представления первой. В таком случае представление будет иметь зависимость (прямую, или на уровне конвенции наименований) от модели представления.
Конструировать представление первым. Тогда модель представления будет требовать в качестве зависимости представление.
В большинстве случаев первый вариант является оптимальным выбором, т.к., с одной стороны, для покрытия кода тестами модель представления должна быть полностью работоспособной, даже если с ней не ассоциировано ни одного представления, и с другой стороны, работа представления без модели представления бессмысленна – без логики и привязки данных это будет всего лишь пустой неинтерактивный макет.
