- •Вопрос 1. Статические и динамические моменты. Механическая характеристика механизма. Уравнениее движения.
- •Вопрос 2. Приведение статических моментов и моментов инерции к валу двигателя. Общие принципы решения задач приведения
- •Вопрос 3. Каскадные схемы включения асинхронных двигателей.
- •Вопрос 4. Переходные процессы электроприводов. Причины, обуславливающие переходные процессы.
- •Вопрос 5. Торможение асинхронного двигателя.
- •Вопрос 7. Пуск, регулирование скорости и торможения синхронного двигателя.
- •Вопрос 8. Переходные процессы при нелинейных характеристиках двигателя и механизма
- •Вопрос 9. Взаимосвязанный электропривод. Электропривод с механическим соединением валов.
- •Вопрос 10. Потери мощности и энергии в установившемся режиме работы электропривода.
- •Вопрос 11. Потери мощности и энергии в переходных процессах электропривода.
- •Вопрос 12. Электрический вал. Основные схемы.
- •Вопрос 14. Способы снижения потерь электроэнергии при в переходных процессах.
- •Вопрос 15. Регулирование скорости электропривода. Общие положения и основные понятия.
- •Вопрос 16. Кпд и коэффициент мощности электропривода. Способы их повышения.
- •Вопрос 17. Режимы работы двигателя постоянного тока независимого возбуждения.
- •Вопрос 18. Расчет мощности и выбор двигателей.
- •Вопрос 19. Регулирование скорости двигателя постоянного тока независимого возбуждения включением резисторов в цепь якоря. Расчет регулировочных резисторов.
- •Вопрос 20. Нагревание и охлаждение двигателей.
- •Вопрос 21. Пуск двигателя постоянного тока независимого возбуждения.
- •Вопрос 22. Косвенные методы проверки двигателей по нагреву.
- •Вопрос 23. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением магнитного потока.
- •Вопрос 24. Повторно кратковременный режим. Особенности проверки по нагреву.
- •Вопрос 25. Регулирование скорости двигателя постоянного тока независимого возбуждения изменением напряжения якоря.
- •Вопрос 26. Кратковременный режим работы. Особенности проверки по нагреву.
- •Вопрос 27. Регулирование скорости двигателя постоянного тока независимого возбуждения в схеме с шунтированием якоря.
- •Вопрос 28. Электрические аппараты ручного управления.
- •Вопрос 29. Электрические аппараты дистанционного управления.
- •Вопрос 30. Схема включения и характеристики двигателей постоянного тока последовательного возбуждения.
- •Вопрос 31. Датчики скорости, времени, тока и положения.
- •Вопрос 32. Характеристики двигателей постоянного тока смешанного возбуждения.
- •Вопрос 33. Электромагнитные муфты и тормозные устройства.
- •Вопрос 34. Регулирование координат двигателя постоянного тока последовательного возбуждения с помощью резисторов. Расчет регулировочных резисторов.
- •Вопрос 35. Типовые схемы пуска и динамического торможения дпт.
- •Вопрос 38. Регулирование скорости двигателя постоянного тока последовательного возбуждения шунтированием якоря резистором.
- •Вопрос 39. Типовые схемы управления Ад с фазным ротором.
- •Вопрос 40. Торможение эп с дпт последовательного возбуждения.
- •Вопрос 42. Электропривод с программным управлением.
- •Вопрос 43. Схема включения, статические характеристики и режимы работы асинхронного двигателя.
- •Вопрос 44. Регулирование скорости ад изменением числа пар полюсов.
- •Вопрос 45. Дискретные элементы и устройства управления эп.
- •Вопрос 48. Регулирование координат ад с помощью резисторов.
- •Вопрос 49. Датчики скорости и положения, применяющиеся в замкнуты схемах управления.
- •Вопрос 50. Расчет регулировочных резисторов в цепи статора ад.
- •Вопрос 51. Следящий электропривод.
- •Вопрос 52. Расчет регулировочных резисторов в цепи ротора асинхронного двигателя.
- •Вопрос 53. Регулирование скорости ад изменением напряжения.
- •Вопрос 54. Замкнутые электроприводы с подчиненным регулированием координат.
- •Вопрос 55. Замкнутые схемы управления эп с дпт с обратными связями по скорости и току.
- •Вопрос 57. Регулирование скорости электропривода. Общие положения и основные понятия.
Вопрос 29. Электрические аппараты дистанционного управления.
К аппаратам дистанционного управления относятся контакторы, магнитные пускатели и реле, коммутация контактов которых осуществляется при подаче на их катушки электрического сигнала (напряжения или тока) и снятии этого сигнала. Другими словами, это двухпозиционные коммутационные аппараты с самовозвратом, включение и выключение которых осуществляется электрическим сигналом.
Контактор представляет собой электромагнитный аппарат, предназначенный для частых дистанционных коммутаций силовых цепей двигателей.
Магнитный пускатель представляет собой специализированный комплексный аппарат, предназначенный главным образом для управления трехфазными асинхронными двигателями, т. е. для их подключения к сети, отключения, обеспечения тепловой защиты и сигнализации о режимах работы.
Электромагнитное реле представляет собой аппарат, предназначенный для коммутации слаботочных цепей управления ЭП в соответствии с электрическим сигналом, подаваемым на его катушку. Область применения реле очень широкая. Они выполняют самые разнообразные функции управления, контроля, защиты и блокировок в автоматизированном ЭП.
Вопрос 30. Схема включения и характеристики двигателей постоянного тока последовательного возбуждения.
В
ЭП электрического транспорта и ряда
грузоподъемных машин и механизмов нашли
широкое применение двигатели постоянного
тока последовательного возбуждения
(ДПТПВ), схема включения и кривая
намагничивания которых показаны на
рисунках. Основной особенностью этих
двигателей является включение обмотки
возбуждения
2
последовательно с обмоткой якоря 1 и
добавочным резистором З, вследствие
чего ток якоря одновременно является
и током возбуждения.
Магнитный поток и ток связаны между собой кривой намагничивания 5, описав которую с помощью приближенного аналитического выражения, можно получить формулы для характеристик двигателя.
В простейшем случае кривую намагничивания представляют прямой линией 4. Такая аппроксимация по существу означает пренебрежение насыщением магнитной системы двигателя и позволяет представить зависимость потока от тока следующим образом: Ф=aI
Электромеханическая и механическая характеристики двигателя выражаются формулами:
Особенность характеристик состоит в том, что при небольших токах и моментах двигателя, соответствующих малым моментам нагрузки, его скорость принимает большие значения, при этом характеристики не пересекают ось скорости. Таким образом, для двигателя последовательного возбуждения, включенного по основной схеме (см. рис), не существуют режимы холостого хода и генератора, работающего параллельно с сетью (или режима рекуперативного торможения), так как характеристики во втором квадранте не проходят.
Вопрос 31. Датчики скорости, времени, тока и положения.
Датчики времени. При построении схем управления ЭП по принципу времени в качестве датчиков используются различные реле времени - электромагнитые, электромеханические, электронные, анкерные и механические.
Электромагнитное реле времени состоит из неподвижной части магнитопровода 2, на котором установлена катушка 1, и подвижной части магнитной системы - якоря б с контактами 8 и 9. При отсутствии напряжения на катушке якорь 6 с помощью пружины 4 удерживается в поднятом положении.
Электромеханическое реле времени состоит из специального низкоскоростного двигателя и редуктора с большим передаточным числом, на выходном валу которого имеется рычаг, начальное положение которого устанавливается по шкале уставок времени. Начало отсчета времени соответствует подаче напряжения на двигатель, который, включившись, начинает вращаться и медленно поворачивать рычаг на валу редуктора.
В электронных реле времени обычно используются различные полупроводниковые элементы (чаще всего транзисторные) и конденсаторы, время разряда или заряда которых и определяет выдержку времени.
В пневматических реле выдержка времени обеспечивается воздушным замедлителем, управляемым с помощью электромагнита. При подаче на электромагнит напряжения питания начинается процесс перекачки воздуха из одной камеры реле в другую через калиброванное дроссельное отверстие.
Механическое реле времени имеет замедлитель в виде анкерного механизма, управляемого электромагнитом. При подаче напряжения на электромагнит его якорь заводит пружину анкерного механизма аналогично часовому.
Датчики скорости. Информацию о скорости ЭП можно получать как от различных датчиков скорости, так и от самого двигателя Скорость двигателей постоянного и переменного тока определяет их электродвижущую силу. Таким образом, используя ЭДС в качестве измеряемой (контролируемой) переменной, можно получить информацию о скорости ЭП.
Электромеханическое реле контроля скорости (РКС) работает по принципу асинхронного двигателя.
Тахогенератор (ТГ) как датчик скорости двигателя обычно применяется в различных схемах управления. Центробежное реле скорости, выполненное по принципу центробежного регулятора скорости, вследствие своей громоздкости и невысокой надежности в схемах ЭП применяется редко.
Датчики тока. При достижении этим током уровня срабатывания или отпускания происходит коммутация контактов реле тока, которые производят соответствующие переключения в схемах управления двигателем.
Наиболее широко для этих целей применяются реле минимального и максимального токов Датчики положения. К датчикам положения, которые широко используются в разомкнутых схемах управления ЭП, относятся путевые и конечные выключатели различных типов. При достижении ЭП или исполнительным органом рабочей машины определенных положений эти выключатели выдают сигналы, которые затем поступают в цепи управления, защиты и сигнализации. Конечные выключатели применяются для предотвращения выхода исполнительных органов из рабочей зоны (например, моста подъемного крана за пределы подкрановых путей). Путевые выключатели используются для подачи команд управления в схему в определенных точках пути исполнительных органов (например, при подходе кабины лифта к этажу).
