- •1) Основные понятия теории колебаний. Виды маятников. Уравнение свободных незатухающих колебаний.
- •2) Cложение сонаправленных колебаний. Биения
- •3) Сложение взаимно перпендикулярных колебаний. Уравнение эллипса. Фигуры Лиссажу
- •4) Затухающие колебания. Логарифмический декремент затухания, добротность.
- •5) Вынужденные колебания. Резонанс.
- •6) Упругие волны. Механизм образования волн. Плоская монохроматическая волна. Уравнение волны. Характеристики: частота, длина волны, волновой вектор.
- •7) Фазовая скорость. Волновое уравнение. Поглощение волн, закон Бугера.
- •8) Электромагнитные волны, свойства электромагнитных волн
- •9) Волновой пакет, гурупповая скорость. Связь линейной и групповой скорости. Энергия и плотность энергии волны. Вектор Пойнтинга
- •10) Интерференция света. Интерференция от двух источников. Полосы равной толщины и равного наклона.
- •11) Дифракция света. Принцип Гюйгенса. Метод зон Френеля. Дифракция Френеля и Фраунгофера. Дифракционная решетка.
- •12) Естественный и поляризованный свет. Поляризация света. Закон Малюса. Закон Брюстера.
- •13) Базовые понятия голографии. Схема лучей при голографии объектов.
- •14) Тепловое излучение и его основные характеристики. Законы теплового излучения.
- •15) Гипотеза и формула Планка. Энергия, импульс, масса фотона. Фотоэффект.
- •16) Корпускулярно-волновая двойственность света. Эффект Комптона. Рентгеновское излучение.
- •17) Гипотеза де Бройля. Волна де Бройля и ее свойства. Соотношение неопределенностей Гейзенберга. Принцип причинности в квантовой механике.
- •18) Временное уравнение Шредингера. Уравнение Шредингера для стационарных состояний. Волновая функция, смысл, свойства.
- •19) Частица в потенциальной яме с бесконечно высокими стенками: квантование энергии, вероятность нахождения микрочастицы внутри потенциальной ямы.
- •20) Поведение частицы вблизи потенциальных барьеров. Туннельный эффект.
- •21) Статистические свойства квантового осциллятора. Энергия колебаний.
- •22) Правило отбора. Теория атома водорода. Квантовые числа. Спин электрона.
- •23) Принцип Паули и квантовые основания Периодического закона.
- •24) Зонный характер энергетического спектра электронов в кристаллах. Классификация кристаллов на основе зонной теории. Классификация полупроводников. Уровень Ферми и его температурная зависимость.
- •25) Электропроводность полупроводников и ее зависимость от температуры. Электронно-дырочный переход и его основные свойства.
- •26) Статистические и термодинамический методы исследования. Статистические законы распределения.
- •27) Элементы физической кинетики (среднее число столкновений и средняя длина свободного пробега).
- •28) Кинетические явления переноса (уравнение вязкости, теплопроводности, диффузии)
- •29) Количество теплоты, внутренняя энергия, первое начало термодинамики и его применение к изопроцессам.
- •30) Теплоемкость системы. Адиабатический процесс (определение, примеры, уравнение).
- •31) Циклы в термодинамике. Цикл Карно. Второе начало термодинамики.
- •32) Энтропия. Свойства энтропии. Статистическое толкование второго начала термодинамики.
- •33) Строение атомного ядра. Модели атомного ядра. Ядерные силы и их свойства.
23) Принцип Паули и квантовые основания Периодического закона.
При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии. Принцип Паули помогает объяснить разнообразные физические явления. Следствием принципа является наличие электронных оболочек в структуре атома, из чего, в свою очередь, следует разнообразие химических элементов и их соединений.
В 1869 г. Д. И. Менделеев открыл периодический закон изменения химических и физических свойств элементов в зависимости от их атомных масс. Д. И. Менделеев ввел понятие порядкового номера Z-элемента и, расположив химические элементы в порядке возрастания их номера, получил полную периодичность в изменении химических свойств элементов. Физический смысл порядкового номера Z-элемента в периодической системе был установлен в ядерной модели атома Резерфорда: Z совпадает с числом положительных элементарных зарядов в ядре (протонов) и, соответственно, с числом электронов в оболочках атомов.
Принцип Паули дает объяснение Периодической системы Д. И. Менделеева. Начнем с атома водорода, имеющего один электрон и один протон. Каждый последующий атом будем получать, увеличивая заряд ядра предыдущего атома на единицу (один протон) и добавляя один электрон, который мы будем помещать в доступное ему, согласно принципу Паули, состояние.
У атома водорода Z = 1 на оболочке 1 электрон. Этот электрон находится на первой оболочке (K-оболочка) и имеет состояние 1S, то есть у него n =1,а l =0(S-состояние), m = 0, ms = ±l/2 (ориентация его спина произвольна).
У атома гелия (Не) Z = 2, на оболочке 2 электрона, оба они располагаются на первой оболочке и имеют состояние 1S, но с антипараллельной ориентацией спинов. На атоме гелия заканчивается заполнение первой оболочки (K-оболочки), что соответствует завершению I периода Периодической системы элементов Д. И. Менделеева. По принципу Паули, на первой оболочке больше 2 электронов разместить нельзя.
У атома лития (Li) Z = 3, на оболочках 3 электрона:2—на первой оболочке (К-оболочке)и1—на второй (L-оболочке). На первой оболочке электроны в состоянии 1S, а на второй – 2S. Литием начинается II периодтаблицы.
У атома бериллия (Be) Z = 4, на оболочках 4 электрона: 2 на первой оболочке в состоянии IS и 2 на второй в состоянии 2S.
У следующих шести элементов – от В (Z = 5) до Ne(Z = 10) – идет заполнение второй оболочки, при этом электроны находятся как в состоянии 2S, так и в состоянии 2р (у второй оболочки образуется 2 под-оболочки).
У атома натрия (Na) Z = 11. У него первая и вторая оболочки, согласно принципу Паули, полностью заполнены (2 электрона на первой и 8 электронов на второй оболочках). Поэтому одиннадцатый электрон располагается на третьей оболочке (М-оболочке), занимая наинизшее состояние 3S. Натрием открывается III период Периодической системы Д. И. Менделеева. Рассуждая подобным образом, можно построить всю таблицу.
Таким образом, периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов.
