- •Введение в базы данных
- •Отношения между прикладными программами и субд
- •Системы обработки баз данных
- •История баз данных
- •Организационный контекст
- •Реляционная модель
- •Коммерческие субд для микрокомпьютеров
- •Клиент-серверные приложения баз данных
- •Базы данных с использованием Интернет-технологий
- •Распределенные базы данных
- •Объектно-ориентированные субд
- •Банк данных
- •Основные понятия и определения
- •Пользователи банков данных
- •База данных
- •Архитектура базы данных. Физическая и логическая независимость
- •Схемы и отображения
- •Независимость от данных
- •Система управления базами данных – субд
- •Процесс прохождения пользовательского запроса
- •Введение в разработку баз данных
- •Метаданные
- •Индексы
- •Метаданные приложений
- •Подсистема средств проектирования
- •Подсистема обработки
- •Ядро субд
- •Создание базы данных
- •Процесс разработки базы данных
- •Моделирование данных
- •Функции субд
- •Модели данных
- •Объектные или инфологические модели данных
- •Модели данных на основе записей или даталогические
- •Реляционная модель данных
- •Преподаватели
- •Сетевая модель данных
- •. Физические модели данных
- •Концептуальное моделирование
- •Реляционная модель
- •Структура реляционных данных
- •Кортежи
- •Внешний ключ
- •Альтернативная терминология
- •Математические отношения
- •Отношения в базе данных
- •Реляционные ключи
- •Реляционная целостность
- •Целостность сущностей
- •Ссылочная целостность
- •Реляционные языки
- •Реляционная алгебра
- •Учебный проект DreamHome
- •Реляционная алгебра (продолжение)
- •Выборка (или ограничение)
- •Проекция
- •Декартово произведение
- •Объединение
- •Разность
- •Операции соединения
- •Tema-соединение (θ-join)
- •Естественное соединение
- •Внешнее соединение
- •Полусоединение
- •Пересечение
- •Деление
- •Другие языки
- •Примеры применения реляционной алгебры
- •Обзор жизненного цикла информационных систем
- •Жизненный цикл приложения баз данных
- •Проектирование базы данных
- •Проектирование баз данных на основе восходящего подхода (Метод нормализации или декомпозиции)
- •Цель нормализации
- •Проблемы, вызываемые использованием единственного отношения (аномалии обновления)
- •Проблема вставки
- •Проблема обновления
- •Проблемы удаления
- •Функциональные зависимости
- •Процесс нормализации
- •Декомпозиция без потерь и функциональные зависимости
- •Первая нормальная форма (1 нф) (из Коннолли)
- •Вторая нормальная форма (2нф)
- •Третья нормальная форма (знф)
- •Нормальная форма Бойса-Кодда (нфбк)
- •4 И 5 нормальные формы (4нф и 5нф)
- •Пример нормализации
- •. Другая декомпозиция отношения консультант
- •Некоторые комментарии к декомпозиционному алгоритму проектирования
- •Некоторые модификации алгоритма проектирования Избыточные функциональные зависимости
- •Транзитивные зависимости
- •Добавление атрибутов в фз
- •Правила вывода
- •Алгоритм проектирования бд методом декомпозиции (восходящий метод)
- •Проверка отношений на завершающей фазе их проектирования
- •Задачи к текущему материалу
- •Пример аномалий для 2нф
- •Нормальная форма Бойса—Кодда (нфбк) с примером аномалий для 3 формы
- •Язык sql
- •Запрос одиночной таблицы
- •Проектирование в sql
- •Выборка в sql
- •Сортировка
- •Встроенные функции sql
- •Встроенные функции и группировка
- •Запрос нескольких таблиц
- •Вложенные запросы
- •Соединение с помощью sql
- •Сравнение вложенного запроса и соединения
- •Внешнее соединение
- •Операторы exists и not exists
- •Изменение данных
- •Insert into запись
- •Insert into запись
- •Insert into третьекурсник
- •Удаление данных
- •Модификация данных
- •Запрос на sql с exist и not exist (реализация реляционной операции Деления)
- •Операция внешнего соединения таблиц в access (Мои замечания)
- •Псевдонимы столбцов и таблиц
- •Уточнения запроса
- •Теоретико-множественные операции
- •Декартово произведение наборов записей
- •Объединение наборов записей (union)
- •Пересечение наборов записей (intersect)
- •Intersect corresponding (id_компонента, Тип_компонента)
- •Вычитание наборов записей (except)
- •Операции соединения
- •Естественное соединение (natural join)
- •Условное соединение (join... On)
- •Соединение по именам столбцов (join... Using)
- •Внешние соединения
- •Левое соединение {left outer join)
- •Правое соединение {right outer join)
- •Внешнее соединение Преподаватель-Изучение-Предмет. Создание в access. Пример
- •Операторы exists и not exists
- •Низходящее проектирование бд на основе er-модели Модель «сущность—связь» и ее варианты
- •Реализация низходящего проектирования бд на основе er-модели
- •Типы сущностей
- •Способы представления сущностей на диаграмме
- •Атрибуты
- •Типы связей
- •Представление связей на диаграммах
- •Атрибуты связей
- •. Структурные ограничения
- •Показатель кардинальности
- •Степень участия
- •Примеры er-проектирования
- •Модель «сущность—связь» в другом рассмотрении
- •Элементы модели «сущность—связь»
- •Сущности
- •Атрибуты
- •Идентификаторы
- •Три типа бинарных связей
- •Диаграммы «сущность—связь»
- •Изображение атрибутов в диаграммах «сущность—связь»
- •Слабые сущности
- •Представление многозначных атрибутов при помощи слабых сущностей
- •Подтипы сущностей
- •Пример er-диаграммы
- •Документирование делового регламента
- •Модель «сущность—связь» и case-средства
- •Диаграммы «сущность—связь» в стиле uml
- •Сущности и связи в uml
- •Представление слабых сущностей
- •Представление подтипов
- •Конструкции ооп, введенные языком uml
- •Роль uml в базах данных на сегодняшний день
- •Примеры
- •Вопросы группы I
- •Вопросы группы II
- •Литература по курсу «базы и банки данных»
Модель «сущность—связь» и case-средства
Разработка моделей данных в рамках модели «сущность—связь» значительно упростилась в последние годы, поскольку теперь инструменты для построения ER-диаграмм входят в состав многих популярных CASE-средств. К таким продуктам относятся, в частности, IEW, IEF, DEFT, ER-WIN и Visio. Эти продукты также объединяют сущности с отношениями, с помощью которых эти сущности представлены в базе данных, что может облегчить администрирование, управление и обслуживание базы данных.
Мы не предполагаем работать с CASE-средствами в рамках данной книги. Но если в вашем университете имеется такое средство, всеми способами используйте его для создания ER-диаграмм при выполнении назначенных вам упражнений. ER-диаграммы, созданные с помощью CASE-средств, обычно имеют более красивый вид, и их гораздо легче изменять и адаптировать.
Диаграммы «сущность—связь» в стиле uml
Унифицированный язык моделирования (UML) — это набор структур и методик для моделирования и проектирования объектно-ориентированных программ (ООП) и приложений. UML — это одновременно и методология разработки систем ООП, и набор инструментов для разработки таких систем. UML получил известность стараниями группы OMG (Object Management Group) — организации, которая занимается разработкой ООП-моделей, технологии и стандартов с 1980-х годов. Этот язык стал также находить широкое применение в среде профессионалов ООП. На UML базируются инструменты для объектно-ориентированного проектирования, разработанные компанией Rational Systems.
Будучи методологией разработки приложений, UML является предметом курса системной разработки и поэтому представляет для нас лишь ограниченный интерес. Вам могут, однако, встретиться диаграммы «сущность—связь», выполненные в стиле UML, поэтому представление об этом стиле следует иметь.
Нужно просто осознать, что когда дело касается проектирования баз данных, обращение с этими диаграммами происходит точно так же, как и с традиционными ER-диаграммами.
Сущности и связи в uml
На рис. 3.12 приведено UML-представление структур, изображенных на рис. 3.3. Каждая сущность представлена классом сущностей, который изображен в виде прямоугольника с тремя сегментами. В верхнем сегменте указано имя сущности и другие данные, о которых мы будем говорить далее. Во втором сегменте перечислены имена атрибутов сущности, а в третьем описаны ограничения и методы (программные процедуры), относящиеся к данной сущности.
Связи показаны линиями, соединяющими две сущности. Кардинальность представлена в формате х..у, где х — это необходимый минимум, а у — допустимый максимум. Так, 0..1 означает, что наличие данной сущности необязательно, а максимально допустимое количество — одна. Звездочка представляет неограниченное количество. Например, запись 1..* означает, что требуется одна сущность, а допускается неограниченное количество. Найдите на рис. 3.12, а, 6 примеры связей с максимальной кардинальностью 1:1, 1:N и N:M.
Представление слабых сущностей
На рис. 3.13 изображено UML-представление слабых сущностей. На линии связи рядом с родителем слабой сущности (то есть рядом с сущностью, от которой зависит слабая сущность) помещается закрашенный ромб. На рис. 3.13, а сущность РЕЦЕПТ является слабой сущностью, а сущность ПАЦИЕНТ — ее родителем. Все слабые сущности имеют родителя, поэтому их кардинальность в связи с родителем всегда 1..1. Исходя из этого, кардинальность на родительской стороне обозначается просто как 1.
На рис. 3.13, а показана слабая сущность, не являющаяся идентификационно-зависимой. Это обозначается выражением <non-identifying> (не идентифицирующая) на связи ПАЦИЕНТ-РЕЦЕПТ. На рис. 3.13, б изображена идентификационно-зависимая слабая сущность. На это указывает ярлык <identifying> (идентифицирующая).
