Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matem1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
225.28 Кб
Скачать

7)Противоположные события. Их свойства.

Под противоположным событием   понимается событие, которое обязательно должно произойти, если не наступило некоторое событие  . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным — событие  , либо бракованным — событие  .

8)Элементарные события.

В теории вероятностей элементарное событие или событие-атом – это подмножество пространства исходов случайного эксперимента, которое состоит только из одного элемента. Важно заметить, что элементарное событие – это всё ещё множество, состоящее из одного элемента пространства исходов, но не сам элемент. Однако элементарные события обычно записываются как элементы, а не как множества с целью упрощения, когда это не может вызвать недоразумения.

Примеры пространств исходов эксперимента, S, и элементарных событий:

Если объекты счётны, а пространство исходов S = {0, 1, 2, 3, ...} (натуральные числа), то элементарные события – это любые множества {k}, где k ∈ N.

Если монета бросается дважды, S = {HH, HT, TH, TT}, H для орла, а T для решетки, то элементарные события: {HH}, {HT}, {TH} и {TT}.

Если X – это нормально распределенные случайные величины, S = (-∞, +∞), реальные числа, то элементарные события – любые множества {x}, где x ∈ R. Этот пример показывает, что непрерывное вероятностное распределение не определяется вероятностями событий-атомов, поскольку здесь вероятности всех элементарных событий равны нулю.

Элементарные события могут иметь вероятности, которые строго положительны, нули, неопределенны, или любая комбинация из этих вариантов. Например, любое дискретное вероятностное распределение определяется вероятностями того, что может быть названо элементарными событиями. Напротив, все элементарные события имеют вероятность нуль для непрерывного распределения. Смешанные распределения, не будучи ни непрерывными, ни дискретными, могут содержать атомы, которые могут мыслиться как элементарные (т.е. события-атомы) события с ненулевой вероятностью. В теории меры в определении вероятностного пространства вероятность произвольного элементарного события не могла быть определена до тех пор, пока математики не увидели различие между пространством исходовS и событиями, которые представляют интерес, и которые определяются как элементы σ-алгебры событий из S.

9)Определение вероятности. Примеры.

Вероя́тность — степень (относительная мера, количественная оценка) возможности наступления некоторого события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным. Перевес положительных оснований над отрицательными, и наоборот, может быть в различной степени, вследствие чего вероятность (и невероятность) бывает большей или меньшей. Поэтому часто вероятность оценивается на качественном уровне, особенно в тех случаях, когда более или менее точная количественная оценка невозможна или крайне затруднительна. Возможны различные градации «уровней» вероятности.

Пусть в урне содержится 6 одинаковых, тщательно перемешанных шаров, причем 2 из них - красные, 3 - синие и 1 - белый. Очевидно, возможность вынуть наудачу из урны цветной (т. е. красный или синий) шар больше, чем возможность извлечь белый шар. Можно ли охарактеризовать эту возможность числом? Оказывается, можно. Это число и называют вероятностью события (появления цветного шара). Таким образом, вероятность есть число, характеризующее степень возможности появления события.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]