- •Введение
- •Министерство образования Российской Федерации
- •Методическое пособие
- •1. Конструкция и расчет оборудования для подготовки шихтовых материалов к плавке. Особенности конструкций кранов, обслуживающих рудные дворы.
- •1.1 Типовой разрез открытого шихтарника.
- •1.2 Кинематическая схема шихтовочной машины.
- •1.3 Конструкция оборудования для бункерного хранения и дозирования материалов.
- •1.4 Конструкция питателей и их расчет.
- •1.4.1 Ленточные питатели.
- •1.4.2 Пластинчатые питатели.
- •1.4.3 Вибрационный питатель.
- •1.4.4 Барабанный питатель
- •1.4.5Тарельчатый питатель.
- •2. Конструкция и расчет механического оборудования дробильных цехов.
- •2.1 Теоретические основы дробления и измельчения.
- •2.2 Щековые дробилки.
- •2.3 Расчет основных параметров щековых дробилок. Параметры дробилок с простым качанием щеки.
- •2.4 Конусные дробилки.
- •2.5 Основные параметры конусных дробилок.
- •2.6 Валковые дробилки.
- •2.7 Дробилки ударного действия.
- •3 Конструкция и расчет оборудования для измельчения.
- •3.1Мельницы самоизмельчения.
- •3.2 Вибрационные мельницы.
- •3.3 Прочностные расчеты основных рабочих деталей мельниц.
- •3.4 Кинематические и энергосиловые режимы работы мельниц.
- •4.Конструкция и расчет механического оборудования для грохочения.
- •4.1Общие сведения.
- •4.2 Расчет не приводных грохотов.
- •4.3 Приводные грохоты.
- •4.3.1 Валковые грохоты.
- •4.3.2 Барабанные грохоты.
- •4.3.3 Вибрационный грохот.
- •4.3.4 Самобалансный грохот.
- •4.3.5 Расчет вибрационного грохота.
- •5. Конструкция и расчет механического оборудования для обогащения.
- •5.1 Общая характеристика процессов обогащения.
- •5.1.1 Гравитационное обогащение.
- •5.2.2 Конструкция и расчет механического оборудования для агломерации и окомкования.
- •6.Механическое оборудование для перемешивания шихты.
- •6.1 Лопастные шнековые смесители.
- •6.2 Барабанный смеситель.
- •6.3 Расчет производительности и мощности привода барабанного смесителя.
- •7. Конструкция и расчет оборудования плавильных и литейных агрегатов.
- •7.1 Машины для вскрытитя чугунной летки.
- •7.2 Машины для забивки или закрывания чугунной летки (электропушки).
- •7.3 Засыпные аппараты.
- •7.4 Скиповый подъемник шихтовых материалов.
- •8 Конструкция и расчет электродуговых печей и обслуживающих машин.
- •8.1 Схема рабочего пространства электродуговых печей.
- •8.2 Конструкции механизмов электродуговых печей.
- •8.3 Конструкции механизмов для зажима и перемещения электродов.
- •8.4 Расчет механизма зажима электродов.
- •8.5 Расчет механизмов подъема, поворота свода и перемещения электродов для печи с их опорой на люльку.
- •8.6 Расчет мощности электродвигателя механизма перемещения электродов.
- •8.7 Расчет привода механизма наклона печи.
- •9 Конструкция и расчет машин и агрегатов конверторных цехов.
- •9.1 Конструкция вертикальных конверторов и их механизмов.
- •9.2 Расчет механизма поворота вертикального конвертора.
- •10 Конструкция и расчет металлургических ковшей для цветных металлов.
- •11 Конструкция и расчет дуговых рудовосстановительных рафинировочных печей.
- •11.1 Расчет мощности привода вращения ванны печи.
- •11.2 Расчет основных параметров гидравлических зажимных устройств и механизмов перемещения электродов.
- •12 Конструкция и расчет переплавных печей.
- •13 Конструкция и расчет печей электронно-лучевого переплава.
- •14 Конструкция печей электрошлакового переплава.
- •15 Конструкция и расчет приводов и механизмов печей вдп, элп, эшп.
- •16 Конструкция и расчет разливочных машин и их оборудования.
- •16.1 Конструкция вертикальных унрс.
- •16.2 Конструкция криволинейных и радиальных унрс.
- •16.3 Конструкция унрс с изгибом слитка.
- •16.4 Конструкция вертикально-радиальных унрс.
- •16.5 Конструкция горизонтальных унрс.
- •Литература
11.2 Расчет основных параметров гидравлических зажимных устройств и механизмов перемещения электродов.
В процессе перепуска
электрода при отжатии пружин одного из
зажимных колец нежелательно самопроизвольное
опускание электрода под действием
собственной силы тяжести вследствие
повышенного износа. Поэтому электрод
должен удерживаться в покое под действием
зажимного усилия пружин электрододержателя.
При расчетах принимают, что
удерживающей нагрузки должно приходится
на зажимное кольцо и лишь
на электрододержатель. Если обозначить
коэффициент трения скольжения стали
по резине через
,
а стали по меди через
,
количество щек в одном зажимном кольце
через
,
а щек в электрододержателе через
,
то усилие на одну щеку зажимного кольца:
,
а на одну контактную щеку электрододержателя:
,
где
- сила тяжести электрода.
Гидроцилиндры механизма перемещения определяются по зависимости:
,
где
- площадь сечения плунжера одного гидроцилиндра;
,
,
,
,
,
- силы тяжести соответственно электрода,
несущего гидроцилиндра, нижней и верхней
траверсы, электрододержателя и механизма
перепуска.
- расчетное давление
с учетом потерь в сети между гидроцилиндром
и насосом.
,
- КПД гидроцилиндров и роликов.
При скорости
передвижения электрода
определяется производительность насоса:
,
где
- коэффициент
потерь давления.
Мощность электродвигателя насоса:
.
12 Конструкция и расчет переплавных печей.
Вакумно-дуговой переплав является одним из основных процессов промышленной спецметаллургии, он позволяет получать высококачественные материалы для специальных отраслей техники. Высокое качество металлов достигается в результате протекания плавки в вакууме, при которой из металла удаляются растворенные в нем газы и твердые неметаллические включены, испаряются примеси цветных металлов. Кроме того, в результате затвердевания в водоохлаждающем кристаллизаторе получают плотный слиток, с малой по высоте усадочной раковины и с однородной кристаллической структурой и малой ликвацией. В качестве исходного материала используют различные продукты металлургического передела. (например типовая рубка). В результате обжатия ее на мощных прессах или частичного сплавления получают расходуемые электроды. При плавке ниобия, молибдена, тантала и некоторых других металлов исходным материалом являются штабики, размером 10×10×600 мм, полученные методом порошковой металлургии. Электроды из штабиков изготавливают сваркой их в пакеты. При переплаве сталей применяют литые, кованные электроды.
Рис. 30 Схема вакуумно-дугового переплава
Отечественные заводы электротермического оборудования освоили серию печей ВДП. Эта серия включает печи типов:
- ДСВ – дуговая для плавки стали вакуумная;
- ДТВ – для плавки титана;
- ДДВ – для плавки молибдена;
- ДНВ – для плавки ниобия.
Основными элементами печи вакуумно-дугового переплава является:
1 – водоохлаждаемый поддон;
2 – кристаллизатор;
3 – соленоид;
4 – слиток;
5 – локальная ванна жидкого металла;
6 – электрод.
Основными элементами печи являются внутренняя камера, водоохлаждаемый кристаллизатор, система электропитания и система вакуумных насосов. Суть процесса заключается в том, что под действием высоких температур электрической дуги, возникающей под нижним концом электрода, металл электрода в этом месте расплавляется и каплями падает в находящуюся под дугой жидкую ванну, которая под действием охлаждения кристаллизатора непрерывно снизу затвердевает, образуя слиток. По мере плавления электрода его опускают вниз, а высота затвердевшего слитка увеличивается.
Наиболее распространены печи с расходуемым электродом и среди них печи с глухим кристаллизатором и с выкатыванием слитка.
Чаще всего используют печи первого типа, а печи с вытягиванием слитка применяются в основном для плавки тугоплавких металлов, качество которых сильно зависит от величины давления определяющихся в процессе плавки газов. Для улучшения отсоса газов уровень расплава поддерживается постоянно в верхней части кристаллизатора. В этих печах вытягиваемый слиток поступает в камеру охлаждения.
Часто кристаллизатор оборудован расположенным снаружи солиноидом 3, создающим аксиальное магнитное поле для стабилизации горения дуги и предупреждения ее переброса на стенки кристаллизатора.
Все печи ВДП, независимо от их конструкции и типа, работают на постоянном токе. В качестве источника питания служат тиристорные выпрямительные агрегаты. Рабочий ток колеблется в пределах 12 – 50 кА, а напряжение 28 – 70 В. Ток подается к верху электрододержателя (отрицательный полюс) и к поддону (положительный полюс).
