- •Isbn © Власенко м.Ю., Вельямінова-Зернова л.Д., Мацкевич в.В.
- •III. Структура і функції біомолекул. Обмін органічних речовин у рослинному організмі
- •VII. Дихання рослин
- •Передмова
- •Розділ I загальні закономірності життєдіяльності рослинного організму
- •1.1. Предмет і завдання фізіології та біотехнології
- •1.2. Основні етапи розвитку фізіології рослин
- •1.3. Фізіологія рослин як фундаментальна біологічна наука та теоретична основа агрономічних наук
- •1.4. Основні напрями сучасної фізіології рослин
- •1.5. Методи та рівні досліджень фізіології рослин
- •1.6. Фізіологічні основи біотехнології
- •Розділ II фізіологія рослинної клітини
- •2.1. Клітина як структурно-функціональна одиниця рослинного організму
- •2.2. Загальна морфологія рослинної клітини
- •2.3. Будова і фізіологічні функції компонентів клітини
- •2.3.1. Клітинна оболонка та її функції
- •2.3.2. Протопласт
- •2.3.3. Вакуолі, їх функції
- •2.4. Особливості будови органел цитоплазми та їх біологічні функції
- •2.4.1. Пластиди
- •2.4.2. Мітохондрії
- •2.4.3. Рибосоми
- •2.4.4. Апарат Гольджі
- •2.4.5. Лізосоми
- •2.4.6. Мікротрубочки
- •2.4.7. Ендоплазматичний ретикулум
- •2.5. Клітинні мембрани, їх будова, хімічний склад та функції
- •Питання для самоконтролю
- •Розділ III структура і функції біомолекул. Обмін органічних речовин у рослинному організмі
- •3.1. Загальна характеристика рослинних білків, структура, функція та класифікація
- •3.1.1. Характеристика і класифікація амінокислот
- •3.1.2. Пептиди і поліпептиди
- •3.1.3. Біосинтез основних амінокислот
- •3.1.4. Залежність біосинтезу амінокислот і білків від екологічних факторів в онтогенезі
- •3.2. Нуклеїнові кислоти, їх види, структура та значення
- •3.2.1. Основні етапи біосинтезу білків
- •3.2.2. Синтез і розпад білків
- •3.3. Ферменти, хімічна природа і будова молекули
- •3.3.1. Класифікація ферментів
- •3.3.2. Властивості ферментів та локалізація
- •3.3.3. Залежність активності ферментів від факторів середовища
- •3.3.4. Механізм ферментативного каталізу
- •3.4. Біохімічна характеристика і значення вуглеводів
- •Біосинтез і взаємні перетворення вуглеводів. Ферменти вуглеводного обміну
- •Транспортні й запасні форми вуглеводів
- •3.4.3. Вуглеводний обмін при формуванні насіння і плодів
- •3.4.4. Обмін вуглеводів залежно від екологічних факторів і умов середовища
- •3.5. Біохімічна характеристика та значення ліпідів
- •3.5.1. Біосинтез жирів
- •3.5.2. Обмін жирів при формуванні насіння олійних культур залежно від факторів навколишнього середовища
- •3.5.3. Обмін жирів під час зберігання насіння
- •3.6.1. Біосинтез і фізіологічна роль водорозчинних вітамінів
- •3.6.2. Жиророзчинні вітаміни
- •3.6.3. Зміна вмісту вітамінів у онтогенезі рослин залежно від екологічних факторів і умов вирощування
- •3.7. Речовини вторинного походження
- •3.8. Взаємозв’язок перетворень речовин у рослині
- •3.8.1. Листок як основний орган біосинтезу
- •3.8.2. Роль кореня у біосинтезі
- •3.9. Конституційні й запасні речовини
- •Питання для самоконтролю
2.2. Загальна морфологія рослинної клітини
Поява клітинних структур на певному ступені еволюції органічного світу виявила одну з основних закономірностей, що характеризуює усе живе, а саме – єдність дискретного і цілого. Саме завдяки клітинній будові організм, будучи дискретним, зберігає цілісність. Розчленування цілого на дрібніші морфологічні одиниці – клітини, що мають великі поверхні, дуже сприятливе для здійснення обміну речовин. Клітинна структура, не порушуючи життєдіяльності цілого організму, сприяє поступовій заміні відмираючих або патологічно змінених частин тіла новими. Сталість клітинної структури в усьому органічному світі зумовлена тим, що тільки вона забезпечує найкраще зберігання, репродукцію і передачу спадкової інформації. Зі структурою пов’язана здатність організмів зберігати, переносити енергію і перетворювати її у роботу.
Згідно із сучасними уявленнями, рослинна клітина складається з трьох основних частин – оболонки, протопласта і вакуолі (рис.1). Клітинна оболонка відносно жорстка, складна у хімічному значенні, і є продуктом діяльності протопласта. Протопласт, тобто жива частина клітини, є колоїдним розчином із розміщеними у ньому структурними компонентами (ядро, пластиди, мітохондрії, ендоплазматична сітка, комплекс Гольджі, рибосоми). Вакуолі – це неживі утворення, заповнені розчинами неорганічних солей, поглинутих клітиною, і органічних речовин – продуктів метаболічної діяльності клітини.
Рис. 1. - Структурні компоненти рослинної клітини
Розміри клітин варіюють досить широко (від одного до кількох сот мікронів). Морфологічні відмінності клітин зумовлені характером біологічних процесів і типом обміну речовин. Якщо рослинна клітина вирощується ізольовано, то її форма наближається до сферичної, якщо в оточенні інших клітин, то може набувати форми багатогранника. Клітини зони росту стебла або кореня за формою нагадують коробочку завдовжки близько 50 мкм, завширшки 20 мкм і висотою 10 мкм. Клітини ембріональних тканини і конуса наростання дуже малих розмірів.
У молодих клітин близькі повздовжні і поперечні розміри, тонка оболонка. Вона повністю заповнена протопластом. З часом, зі збільшенням об’єму клітини, кількість протопласту поступово зростає, у ньому утворюється багато малих вакуолей, які поступово зливаються у одну велику; оболонка потовщується.
Протопласт ззовні і зсередини оточений поверхневими біологічними мембранами: від клітинної стінки його відокремлює плазмалема, від вакуолі – тонопласт.
Протопласт і клітинна оболонка не ізольовані повністю. Вони сполучаються за допомогою спеціалізованих отворів – пор. Через пори у оболонці за допомогою цитоплазматичних тяжів (плазмодесм) протопласт одних клітин з’єднується з протопластом інших. Таким чином, завдяки мембранним утворенням і плазмодесмам усі клітини об’єднані. Плазмодесми за своєю будовою нагадують трубочки діаметром від 20 до 100 нм. У кожній плазмодесмі існує канал (десмотрубочка), по якому різні речовини можуть переходити від однієї клітини до іншої.
Застосування електронного мікроскопа (збільшення х1000000) значно розширило можливість дослідження субмікроскопічної організації клітини, а використання методу диференціального ультрацентрифугування дозволило виділити окремо клітинні органели, що мають різну густину: ядра, хлоропласти, мітохондрії, рибосоми та ін.
Пізнання ультраструктури клітини та інтегрування фізіологічних процесів дозволили проникнути у суть процесів її метаболізму.
