- •Содержание
- •Получение заготовок методом литья.
- •1.1. Классификация литых заготовок
- •1.1.1. Литейная форма и ее элементы
- •1.1.2. Основные свойства литейной формы
- •1.2. Методы литья в разовые формы
- •1.2.1. Сущность литья в песчаные формы
- •1.2.2. Модельный комплект
- •1.2.3. Изготовление отливок в оболочковых формах
- •1.2.4. Изготовление отливок литьем по выплавляемым моделям
- •1.3. Методы литья в постоянные формы
- •1.3.1. Изготовление отливок в кокилях
- •1.3.2. Изготовление отливок литьем под давлением
- •1.3.3. Изготовление отливок литьем под регулируемым давлением
- •1.3.4. Изготовление отливок центробежным литьем
- •1.4. Дефекты отливок и их исправление
- •2. Сварка в основном производстве и при ремонте автотракторной технике
- •2.1. Виды сварки
- •2.1.1. Дуговая сварка плавлением
- •2.1.2. Ручная дуговая сварка
- •2.1.3. Автоматическая дуговая сварка под флюсом
- •2.1.4. Дуговая сварка в защитных газах
- •2.1.5. Плазменная сварка
- •2.1.6. Газовая сварка и термическая резка
- •2.1.7. Контактная сварка
- •2.1.8. Контактная стыковая сварка
- •2.2. Дефекты в сварных соединениях и методы технического контроля
- •Технология получения заготовок и деталий методами обработки металлов давлением.
- •3.1. Сущность обработки металлов давлением
- •Штампуемые из листа детали
- •Виды машиностроительных профилей
- •3.3.1. Производство прокатанных профилей
- •3.3.2. Волочение машиностроительных профилей
- •Обработка металлов резанием
- •4.1. Классификация движений в металлорежущих станках. Схемы обработки резанием
- •4.2. Методы формообразования поверхностей деталей машин
- •4.3. Обработка заготовок на токарных станках
- •4.3.1. Обработка заготовок на токарных автоматах
- •4.3.2. Технологические требования к конструкциям изготовляемых деталей
- •4.3.3. Характеристика метода фрезерования
- •4.3.4. Характеристика метода сверления
- •4.3.5. Схемы обработки заготовок на сверлильных станках
- •4.3.6. Метод строгания
- •Метод протягивания
- •Обработка заготовок на зубообрабатывающих станках
- •Характеристика электрофизических и электрохимических методов обработки
- •5.1.1. ЭлектроискровОй метод
- •5.1.2. ЭлектроимпульснАя обработкА
- •5.1.3. Электроконтактная обработка
- •5.1.4. Электрохимические методы обработки
- •5.1.5. Химические методы обработки
- •5.1.6. Ультразвуковая обработка
- •5.2. Лучевые методы обработки
- •Характеристика метода шлифования
- •6.1. Основные схемы шлифования
- •6.1.1. Обработка заготовок на круглошлифовальных станках
- •6.1.2. Обработка заготовок на внутришлифовальных станках
- •6.1.3. Обработка заготовок на бесцентрово-шлифовальныхстанках
- •6.1.4. Обработка заготовок на плоскошлифовальных станках
- •6.2.1.Полирование заготовок
- •6.2.2. Хонингование
- •6.2.3. Суперфиниш
- •6.2.4. Чистовая обработкапластическимдеформированием
- •6.2.5. Обкатывание и раскатывание поверхностей
6.2.4. Чистовая обработкапластическимдеформированием
Методы обработки без снятия стружки все больше применяют для деталей в связи с ужесточением эксплуатационных характеристик машин: высокой производительности, быстроходности, прочности, точности и др. Такой обработке подвергают предварительно подготовленные поверхности.
Если формы заготовок приблизить к формам готовых деталей, то ответственные поверхности можно обрабатывать шлифованием и затем окончательно одним из методов обработки без снятия стружки. Предоставляется возможность уменьшить количество отходов и упростить обработку.
Методы обработки основаны на использовании пластических свойств металлов, т.е. способности металлических заготовок принимать остаточные деформации без нарушения целостности металла. Отделочная обработка методами пластическогодеформирования сопровождается упрочнением поверхностного слоя, что очень важно для повышения надежности работы деталей. Детали становятся менее чувствительными к усталостному разрушению, повышаются их коррозионнаястойкость и износостойкость сопряжений, удаляются риски и микротрещины, оставшиеся от предшествующей обработки. В ходе обработки шаровидная форма кристаллитов поверхности металла может измениться, кристаллиты сплющиваются в направлении деформации, образуется упорядоченная структура волокнистого характера. Поверхность заготовки принимает требуемые формы и размеры в результате перераспределения элементарных объемов под воздействием инструмента. Исходный объем заготовки остается постоянным.
В зоне обработки не возникает высокая температура, поэтому в поверхностных слоях фазовые превращения не происходят.
Обработку без снятия стружки выполняют на многих металлорежущих станках и установках, используя специальные инструменты. Созданы также особые станки, на которых наряду с резанием заготовки обрабатывают пластическим деформированием. Методы чистовой обработки используют для всех металлов, способных пластически деформироваться, но наиболее эффективны они для металлов с твердостью до НВ 280.
Ожидается, что эти методы все больше будут применяться для высокоточной обработки и использоваться для деталей, размеры которых будут иметь точность в долях микрометра.
6.2.5. Обкатывание и раскатывание поверхностей
Обкатыванием и раскатыванием отделывают и упрочняют цилиндрические, конические, плоские и фасонные наружные и внутренние поверхности.
Сущность этих методов состоит в том, что в результате давления поверхностные слои металла, контактируя с инструментом высокой твердости, оказываются в состоянии всестороннего сжатия и пластически деформируются. Инструментом являются ролики и шарики, перемещающиеся относительно заготовки. Микронеровности обрабатываемой поверхности сглаживаются путем смятия микро выступов и заполнения микро впадин.
Рис.
6.101. Схемы обкатывания и раскатывания
поверхностей
Обкатывают, как правило, наружные поверхности, а раскатывают внутренние цилиндрические и фасонные поверхности. При обкатывании роликами основными параметрами режима упрочнения являются давление в зоне контакта с роликом, число его проходов, подача и скорость обкатывания. Глубину деформированного слоя определяет давление.На рис. 6.101 показаны распространенные схемы обкатывания и раскатывания поверхностей. К вращающейся цилиндрической заготовке подводят закаленный гладкий ролик-обкатку (рис. 6.101, а), который под действием рабочего давления деформирует поверхность. Движение продольной подачи позволяет обрабатывать всю заготовку.Аналогичным инструментом обрабатывают элементы заготовок, но с поперечным движением (рис. 6,101, б). При раскатывании ролик-раскатку закрепляют на консольной оправке (рис. 6.101, в). Более совершенна конструкция инструмента с несколькими роликами (рис. 6.101, г).
Для обеспечения значительной однородности форм микронеровностей используют разнообразные конструкции инструментов, различающихся числом и формой деформирующих частей (роликов, шариков). Наилучшие результаты обеспечивают инструменты, на которые силы передаются через упругие элементы. Этим достигаются постоянные условия обработки в любой точке обрабатываемой поверхности. Сила может регулироваться.
Для обработки поверхностей обкатыванием и раскатыванием чаще всего используют токарные или карусельные станки, применяя вместо режущего инструмента обкатки и раскатки. Суппорты обеспечивают необходимое движение подачи. Раскатки можно устанавливать в пиноли задних бабок. Глубокие отверстия раскатывают на станках для глубокого сверления.
Так как нагрев заготовок в местах контакта с инструментом незначителен, охлаждения не требуется. Для уменьшения трения используют смазывание веретенным маслом или керосином.
Обкатыванием и раскатыванием лишь в незначительной степени исправляют погрешности предшествующей обработки. Поэтому предварительная обработка заготовок должна быть точной с учетом смятия микронеровностей и изменения окончательного размера детали. Решающее значение в достижении необходимого качества поверхностного слоя имеет давление на поверхность. Чрезмерно большое давление так же, как и большое число проходов инструмента, разрушает поверхность и может привести к отслаиванию ее отдельных участков.
Список литературы:
1. Технология конструкционных материалов: учебник для студентов машиностроительных специальностей вузов / А. М. Дальский, Т. М. Барсукова, Л. Н. Бухаркин и др.; Под ред. А. М. Дальского. – 5-е изд., исправленное. – М.: Машиностроение, 2004.-512с., ил.
1
