- •Содержание
- •Получение заготовок методом литья.
- •1.1. Классификация литых заготовок
- •1.1.1. Литейная форма и ее элементы
- •1.1.2. Основные свойства литейной формы
- •1.2. Методы литья в разовые формы
- •1.2.1. Сущность литья в песчаные формы
- •1.2.2. Модельный комплект
- •1.2.3. Изготовление отливок в оболочковых формах
- •1.2.4. Изготовление отливок литьем по выплавляемым моделям
- •1.3. Методы литья в постоянные формы
- •1.3.1. Изготовление отливок в кокилях
- •1.3.2. Изготовление отливок литьем под давлением
- •1.3.3. Изготовление отливок литьем под регулируемым давлением
- •1.3.4. Изготовление отливок центробежным литьем
- •1.4. Дефекты отливок и их исправление
- •2. Сварка в основном производстве и при ремонте автотракторной технике
- •2.1. Виды сварки
- •2.1.1. Дуговая сварка плавлением
- •2.1.2. Ручная дуговая сварка
- •2.1.3. Автоматическая дуговая сварка под флюсом
- •2.1.4. Дуговая сварка в защитных газах
- •2.1.5. Плазменная сварка
- •2.1.6. Газовая сварка и термическая резка
- •2.1.7. Контактная сварка
- •2.1.8. Контактная стыковая сварка
- •2.2. Дефекты в сварных соединениях и методы технического контроля
- •Технология получения заготовок и деталий методами обработки металлов давлением.
- •3.1. Сущность обработки металлов давлением
- •Штампуемые из листа детали
- •Виды машиностроительных профилей
- •3.3.1. Производство прокатанных профилей
- •3.3.2. Волочение машиностроительных профилей
- •Обработка металлов резанием
- •4.1. Классификация движений в металлорежущих станках. Схемы обработки резанием
- •4.2. Методы формообразования поверхностей деталей машин
- •4.3. Обработка заготовок на токарных станках
- •4.3.1. Обработка заготовок на токарных автоматах
- •4.3.2. Технологические требования к конструкциям изготовляемых деталей
- •4.3.3. Характеристика метода фрезерования
- •4.3.4. Характеристика метода сверления
- •4.3.5. Схемы обработки заготовок на сверлильных станках
- •4.3.6. Метод строгания
- •Метод протягивания
- •Обработка заготовок на зубообрабатывающих станках
- •Характеристика электрофизических и электрохимических методов обработки
- •5.1.1. ЭлектроискровОй метод
- •5.1.2. ЭлектроимпульснАя обработкА
- •5.1.3. Электроконтактная обработка
- •5.1.4. Электрохимические методы обработки
- •5.1.5. Химические методы обработки
- •5.1.6. Ультразвуковая обработка
- •5.2. Лучевые методы обработки
- •Характеристика метода шлифования
- •6.1. Основные схемы шлифования
- •6.1.1. Обработка заготовок на круглошлифовальных станках
- •6.1.2. Обработка заготовок на внутришлифовальных станках
- •6.1.3. Обработка заготовок на бесцентрово-шлифовальныхстанках
- •6.1.4. Обработка заготовок на плоскошлифовальных станках
- •6.2.1.Полирование заготовок
- •6.2.2. Хонингование
- •6.2.3. Суперфиниш
- •6.2.4. Чистовая обработкапластическимдеформированием
- •6.2.5. Обкатывание и раскатывание поверхностей
Характеристика электрофизических и электрохимических методов обработки
Развитие всех отраслей промышленности, особенно авиационной и ракетно-космической техники, привело к использованию материалов со специальными эксплуатационными свойствами: сверхтвердых, весьма вязких, жаропрочных, композиционных. Обработка заготовок из этих материалов обычными методами (способами) механической обработки весьма затруднительна или невозможна вообще. Поэтому параллельно с разработкой этих материалов создавались принципиально новые методы (способы) обработки. Характерно, что при механической обработке в технологическом оборудовании электрическая энергия превращается вмеханическую и за счет силового воздействия инструмента (штампа, резца, фрезы, шлифовального круга и т.д.) на заготовку происходит ее формоизменение (формообразование).
Электрофизические и электрохимические (ЭФЭХ) методы обработки основаны на непосредственном воздействии различных видов энергии (электрической, химической и др.) на обрабатываемую заготовку. При обработке заготовок этими методами отсутствует силовое воздействие инструмента на заготовку или оно настолько мало, что практически не влияет на суммарную погрешность обработки. Эти методы позволяют изменять форму обрабатываемой поверхности заготовки и влиять на состояние поверхностного слоя. Так, в некоторых случаях наклеп обработанной поверхности не образуется, дефектный слой незначителен, удаляются прижоги поверхности, полученные при шлифовании, повышаются коррозионные, прочностные и другие эксплуатационные характеристики поверхностей деталей.
Кинематика формообразования поверхностей деталей ЭФЭХ методами обработки, как правило, проста, что обеспечивает точное регулирование процессов и их автоматизацию. ЭФЭХ методы обработки являются универсальными и обеспечивают непрерывность процессов при одновременном формообразовании всей обрабатываемой поверхности. При этом появляется возможность обрабатывать очень сложные наружные и внутренние поверхности заготовок.
Технологическое оборудование для ЭФЭХ методов обработки, так же как и металлорежущие станки, оснащается системами ЧПУ. Внедрение их в различных отраслях промышленности обеспечивает получение значительного экономического эффекта. Классификация ЭФЭХ методов обработки по их физической сущности.
При электроискровой обработке используют прямую полярность, т.е. Э-И подсоединяют к катоду, а Э-3 - к аноду. Генератор импульсов настраивают на соответствующие режимы обработки. Продолжительность импульса составляет 20 ... 200 мкс. Величина энергии импульса регулируется подбором емкости конденсаторов.
При увеличении емкости конденсатора накапливаемый запас энергии возрастает и, следовательно, повышается производительность процесса. В зависимости от количества энергии, расходуемой в импульсе, режим обработки делят на жесткий или средний (для предварительной обработки) и мягкий или особо мягкий (отделочной обработки). Мягкий режим обработки позволяет получать размеры с точностью до 0,002 мм при шероховатости поверхности Ка 0,63 ... 0,16 мкм.
Обработку ведут в ваннах, заполненных диэлектрической жидкостью. Жидкость исключает нагрев электродов (инструмента и заготовки), охлаждает продукты разрушения, уменьшает боковые разряды между инструментом и заготовкой, что повышает точность обработки.
Для обеспечения непрерывности процесса обработки необходимо, чтобы зазор между инструментом-электродом и заготовкой был постоянным. Для этого электроискровые станки снабжают следящей системой и механизмом автоматической подачи инструментов. Инструменты-электроды изготовляют из меди, латуни, медно- графитовых и других материалов.
В эрозионных станках используют различные ГИ электрических разрядов: КС (резистор - емкость); КЬС (Ь - индуктивность); ЬС\ ламповые генераторы. В промышленности применяют широкодиапазонные транзисторные ГИ. Эти генераторы потребляют мощность 4 ... 18 кВт при силе тока 16 ... 125 А. Эффективность обработки составляет 75 ... 1900 мм3/мин при шероховатости обработанной поверхности 4 ... 0,2 мкм.
