Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
экзамен статистика.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
272.1 Кб
Скачать

10. Ряды динамики: понятие, правила построения и виды.

Статистические показатели, расположенные в хронологическом порядке и отражающие изм-ия явления во времени называются рядом динамики. t- показатель времени (на дату, за период) y- уровень рада динамики. Классификация рядов динамики: 1. по временному показателю:

а) если t – на дату – моментный ряд; Моментные ряды динамики отображают состояние изучаемых явлений на определенные даты (моменты) времени. Особенностью моментного ряда динамики является то, что в его уровни могут входить одни и те же единицы изучаемой совокупности.

б) если t – за период – интервальный ряд. Интервальные ряды динамики отображают итоги развития (функционирования) изучаемых явлений за отдельные периоды (интервалы) времени.

Особенностью интервального ряда динамики является то, что каждый его уровень складывается из данных за более короткие интервалы времени..

2. по выражению уровня ряда динамики:

а) абсолютных показателей (количество выпущенной продукции по годам),

б) относительных пок-лей (уровень рождаемости),

в) средние величины (ср з/п,ср.душ. доход)

3. в зависимости от расстояния между уровнями:

а) с равностоящими датами;

б) с неравностоящими датами (увольнение, меняется численность). Показатели ряда динамики: К - темпы роста; цепной , .

- абсолютные приросты разность между двумя уровнями ряда динамики, имеет ту же размерность, что и уровни самого ряда динамики цепной абсолютный прирост - ; базисный абсолютный прирост - .

- темпы прироста. относительный показатель, показывающий на сколько процентов один уровень ряда динамики больше (или меньше) другого, принимаемого за базу для сравнения. Базисные темпы прироста: .Цепные темпы прироста: .

Правильное построение рядов динамики предполагает выполнение ряда требований:

  • все показатели ряда динамики должны быть научно обоснованными, достоверными;

  • показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;

  • показатели ряда динамики должны быть сопоставимы по территории;

  • показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;

  • показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.

11. Способы расчета средней арифметической

Средние арифметические величины. Свойства средней арифметической.

Средняя арифметическая простая (не взвешенная). Эта форма средней используется в тех случаях, когда расчет осуществляется по не сгруппированным данным.

Средняя арифметическая взвешенная. При расчете средних величин отдельные значения признака могут повторяться, встречаться по нескольку раз. В данном случае расчет проводится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.

Средняя арифметическая величина имеет следующие свойства, использование которых упрощает ее расчет.

1) Произведение средней на сумму частот равно сумме произведений отдельных вариантов на соответствующие им частоты.

2) Сумма отклонений индивидуального значения признака от средней арифметической равна нулю:

3) Если все осредняемые варианты уменьшить или увеличить на постоянное число А, то средняя арифметическая соответственно уменьшится или увеличится на туже величину.

4) Если все варианты значений признака уменьшить или увеличить в А раз, то средняя соответственно уменьшится или увеличится в А раз:

5) Если все частоты уменьшить или увеличить в А раз, то средняя останется неизменной:

6) Сумма квадратов отклонений индивидуальных значений признака от средней арифметической меньше, чем сумма квадратов их отклонений от любой другой произвольной величины С: