- •Ряды динамики: понятие, правила построения и виды
- •Виды средних величин, условия их применения в анализе
- •Статистика: Понятие, история возникновения и основные разделы.
- •2. Предмет и категории статистики.
- •3. Статистическая методология и этапы статистического исследования. Организация и задачи статистики в рф.
- •4. Переписи и другие виды специально организованного статистического наблюдения, их роль и значение в условиях рыночной экономики.
- •5. Метод статистических группировок при изучении социально-экономических явлений. Задачи этого метода при сборе и обработке статистической информации.
- •6. Статистические графики, их роль и значение в изучении социально –экономических явлений
- •7. Виды и способы статистического наблюдения
- •8. Виды средних величин, условия их применения в анализе
- •Средняя арифметическая
- •Средняя гармоническая
- •Средняя квадратическая
- •Средняя хронометрическая
- •9. Статистические таблицы, их виды и значение в изложении результата статистической сводки. Основные правила построения статистических таблиц.
- •10. Ряды динамики: понятие, правила построения и виды.
- •11. Способы расчета средней арифметической
- •12. Структурные средние: мода и медиана – понятие и методы их определения.
- •13. Статистическая группировка: понятие, задачи и виды.
- •14. Ошибки статистического наблюдения: понятие, виды и их контроль.
- •15. Индексы: понятие, значения и виды.
- •16. Индивидуальные индексы
- •17. Виды абсолютных и относительных величин, их природа, познавательные свойства и условия применения в экономико-статистическом анализе
- •18. Статистическая сводка материалов наблюдения, ее значение и задачи в экономико-статистическом исследовании
- •19. Средняя величина: понятие, значение и виды.
- •20. Понятие и методы выявления основной тенденции развития в динамических рядах
- •21. Общие индексы
- •22. Понятие о статистической таблице. Виды таблиц по характеру подлежащего. Основные правила построения таблиц, чтение и анализ таблиц.
- •23. Показатели анализа динамических рядов
- •24. Средние величины их виды и методика расчета
- •25. Понятие о статистических индексах, их значения и задачи
- •26. Ряды динамики: понятие, правила построения и виды
- •27. Методы выравнивания динамических рядов.
- •28. Элементы статистического графика. Виды графиков по форме графического образа.
- •29. Виды средних величин, условия их применения в анализе
- •Средняя арифметическая
- •Средняя гармоническая
- •Средняя квадратическая
- •Средняя хронометрическая
- •30. Относительные величины: понятие, виды и их расчет.
- •31. Индекс физического объема товарной массы, способы их вычисления.
- •32. Базисные и цепные индексы, их взаимосвязь и применение в анализе коммерческой деятельности.
- •33. Абсолютные величины: понятие и виды.
- •34. Ошибки наблюдения и меры по обеспечению надежности статистической информации.
- •35.Индексы цен, их экономическое содержание. Способы определения суммы экономического эффекта от изменения цены.
- •36. Статистические показатели динамики. Особенности изучения рядов динамики относительных и средних показателей
- •37. Статистический анализ естественного движения населения
- •38. Понятие трудовых ресурсов. Статистика занятости и безработицы.
- •39. Статистика трудовых конфликтов
- •40. Виды и показатели миграции населения
- •41. Общие и специальные показатели естественного движения населения
- •42. Статистический анализ миграции населения
- •43. Статистика механического движения населения
- •44. Показатели численности, состава и размещения населения
- •45.Статистический анализ рождаемости населения
- •46. Возрастная структура населения и её влияние на социально-экономические показатели.
- •47. Статистика занятости населения
- •48. Понятие уровень жизни и его составляющие
- •49. Фонды времени предприятия и анализ их использования
- •50. Источники данных о населении.
- •51. Классификация нефинансовых активов национального богатства
- •52. Состав и характеристика нефинансовых активов национального богатства
- •53. Финансовые активы национального богатства
- •54. Понятие, объем и состав национального богатства
- •55. Состав и характеристика финансовых активов национального богатства
- •56. Баланс основных фондов, показатели их движения и состояния.
- •57.Классификация основных фондов и показатели эффективности их использования
- •58.Классификация основных фондов. Способы оценки и переоценки оф
- •59.Показатели состояния и движения основных фондов, эффективности их использования
- •60.Статистика основных фондов
- •61. Показатели наличия, состава, движения и использования земельного фонда.
- •62.Валовой внутренний продукт и способы его определения
- •63.Методологические принципы построения счетов и структура снс
- •64.Счет производства в снс
- •65.Основные счета снс и методика их построения
- •66. Валовой внутренний продукт содержание и методы его определения
- •67. Назначение и развитие системы национальных счетов
23. Показатели анализа динамических рядов
Для анализа динамических рядов в статистике используются такие показатели:
1) уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда;
2) абсолютный прирост – характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени, определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными;
3) темп роста характеризует отношение данного уровня статистического процесса к предыдущему или начальному, выраженное в процентах. Темпы роста, вычисленные как отношение данного уровня к предыдущему, называются цепными, а к начальному – базисными;
4) если у темпов роста база сравнения принимается за 1, то полученные статистические показатели называются коэффициентами роста;
5) темпом прироста называется отношение абсолютного прироста к предыдущему или начальному уровню, выраженное в процентах. Темп прироста можно рассчитать по данным о темпе роста;
6) средний темп (коэффициент) роста определяется по формуле средней геометрической;
7) коэффициент опережения – это отношение базисных темпов роста двух динамических рядов за одинаковые отрезки времени;
8) интерполяция – способ определения неизвестных промежуточных значений динамического ряда. Интерполяция заключается по существу в приближенном отражении сложившейся закономерности внутри определенного отрезка времени – в отличие от экстраполяции, которая требует выхода за пределы этого отрезка времени;
9) экстраполяция – метод определения количественных характеристик для совокупностей и явлений, не подвергшихся наблюдению, путем распространения на них результатов, полученных из наблюдения над аналогичными совокупностями за прошедшее время, на будущее и т. д. Характеристика обобщающих индивидуальных абсолютных приростов ряда динамики называется средним абсолютным приростом.
24. Средние величины их виды и методика расчета
На практике определить среднюю во многих случаях можно через исходное соотношение средней (ИСС) или ее логическую формулу:
Данная формула является основополагающей. В зависимости от того, в каком виде представлены исходные данные для расчета средней, зависит, каким именно образом будет реализовано ее исходное соотношение.
Различают следующие виды средней, каждая из которых может быть простой и взвешенной:
1)Средняя арифметическая простая (не взвешенная). Эта форма средней используется в тех случаях, когда расчет осуществляется по не сгруппированным данным.
Средняя арифметическая взвешенная. При расчете средних величин отдельные значения признака могут повторяться, встречаться по нескольку раз. В данном случае расчет проводится по сгруппированным данным или вариационным рядам, которые могут быть дискретными или интервальными.
2)Средняя гармоническая – это величина, обратная средней арифметической из обратных значений признака. Различают среднюю гармоническую простую и взвешенную.
Средняя гармоническая простая .
Средняя гармоническая взвешенная применяется тогда, когда статистическая информация не содержит частот по отдельным вариантам совокупности, а представлена как их произведение.
где
Средняя арифметическая и средняя гармоническая величины могут применятся в одних и тех же ситуациях, но по разным данным. Если в ИСС неизвестен числитель, то в расчетах применяется средняя арифметическая величина. Если в ИСС неизвестен знаменатель, то в расчетах используется средняя гармоническая величина.
3)Средняя квадратическая величина применяется тогда, когда вместо индивидуальных значений признака представлены квадраты исходных величин.
4)Средняя геометрическая применяется в случаях определения средней по значениям, имеющим большой разброс, либо в случаях определения средней величины по относительным показателям.
5)Средняя
степенная. В
математической статистике различные
средние выводятся из формул степенной
средней:
При z = 1 – средняя арифметическая;
z = 0 – средняя геометрическая;
z = –1 – средняя гармоническая;
z = 2 – средняя квадратическая.
Чем выше z, тем больше значения средней величины.
