- •1. Определение биотехнологии, основные направления. Особенности биотехнологических процессов.
- •2. Краткий исторический очерк развития биотехнологии. Новейший этап биотехнологии. Особенности создания продуцентов нового поколения.
- •3. Задачи биотехнологии в решении проблем здоровья человека и человечества.
- •4. Задачи биотехнологии в решении энергетических проблем: перспективы получения экологически чистых источников энергии.
- •5. Отличия биотехнологических процессов от химических и агротехнических.
- •6. Понятие типовая биотехнологическая система биосинтеза продуктов, характеристика ее основных стадий.
- •7. Продуценты биотехнологических процессов: прокариоты, эукариоты, ферментные препараты, культуры клеток и тканей растений и животных.
- •8. Использование продуцентов прокариот для получения микробных биомасс: вакцин, пробиотиков и пищевых продуктов.
- •10. Особенности и типы метаболизма микроорганизмов, условия культивирования микроорганизмов- автотрофов и гетеротрофов.
- •11. Культивирование клеток животных. Получение гибридов: цели и условия культивирования.
- •12. Цели и методы создания и культивирования суспензионных культур растений. Характеристика протопластов растений: цели и методы получения.
- •13. Цели создания и культивирования культур клеток животных.
- •14. Питательные среды для культивирования микроорганизмов. Жидкофазное и твердофазное культивирование продуцентов.
- •15. Методы определения численности клеток и биомассы продуцентов.
- •16. Аппараты для культивирования микроорганизмов-продуцентов.
- •17. Характеристика процессов ферментации.
- •18. Классификация процессов ферментации по фазе культивирования продуцента.
- •19. Основные и вспомогательные стадии биотехнологического процесса.
- •20. Постферментационная стадия: процессы, выполняемые в постферментационную стадию.
- •31. Оптимизация биотехнологических процессов по методу «крутого восхождения-спуска» Бокса–Уилсона.
- •32. Блочные принцип математического моделирования биотехнологических систем.
- •33. Методы отделения биомассы продуцентов от культуральной жидкости.
- •34. Модели, учитывающие влияние субстрата на рост популяции микроорганизмов: модель Перта, модель Андрюса.
- •35. Модели, учитывающие влияние субстрата на рост популяции микроорганизмов: модель Кобозева, модель Блэкмана, модель Моно.
- •36. Определение факторов оптимизации. Методы математического планирования экспериментов.
- •37. Модели, учитывающие влияние продуктов метаболизма на скорость роста культур.
- •38. Основные характеристики процесса роста продуцентов: скорость роста, время генерации, удельная скорость роста. Рост продуцентов в условиях глубинного и поверхностного культивирования.
- •39. Особенности метаболизма фотоавтотрофов и фотогетеротрофов. Использование в биотехнологии.
- •40. Обобщенная технологическая схема получения биомасс продуцентов. Удельная скорость роста продуцента.
- •45. Характеристика ферментов: строение, каталитическая активность ферментов.
- •47. Характеристика основных способов получения микробных ферментных препаратов.
10. Особенности и типы метаболизма микроорганизмов, условия культивирования микроорганизмов- автотрофов и гетеротрофов.
Метаболизм (обмен веществ) микроорганизмов представляет собой совокупность двух взаимосвязанных противоположных процессов катаболизма и анаболизма.
Катаболизм (диссимиляция) - распад веществ в процессе ферментативных реакций и накопление выделяемой при этом энергии в молекулах АТФ.
Анаболизм (ассимиляция) - синтез веществ с затратой энергии.
Особенности метаболизма микроорганизмов состоят в том, что:
-его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных;
-процессы диссимиляции преобладают над процессами ассимиляции;
субстратный спектр потребляемых бактериями веществ очень широк - от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества - загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения);
-бактерии имеют очень широкий набор различных ферментов - это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.
Классификация микроорганизмов по типу метаболизма
Фотоавтотрофы – используют свет как источник энергии и СО2 в качестве основного источника углерода. Эта группа включает большинство фотосинтезирующих микроорганизмов, высшие растения, водоросли.
Фотогетеротрофы – используют свет в качестве источника энергии и как основной источник углерода какое-нибудь органическое вещество. Сюда относят некоторые пурпурные и зеленые бактерии.
Хемоорганогетеротрофы – используют органические химические соединения как основной источник энергии и основной источник углерода
Хемолитоорганотрофы – используют химические неорганические соединения как источник энергии (чаще Н2, восстановленное железо и марганец) и органические соединения как источник углерода.
Хемоорганоавтотрофы – используют в качестве источника энергии органические соединения (чаще низкомолекулярные) и в качестве источника углеродного питания используют СО2
Хемолитоавтотрофы – используют в качестве источника энергии восстановленные химические соединения и СО2 как источник углеродного питания.
Культивирование – выращивание микроорганизмов на специальных питательных средах.
Автотрофные микроорганизмы способны в качестве единственного источника углерода использовать углекислоту - соединение, содержащее углерод в наиболее окисленной форме. В соответствии с этим при культивировании автотрофов необходимо обеспечить клетки углекислотой. Поэтому в среды для культивирования автотрофов вносят бикарбонат натрия или карбонаты, чаще всего углекислый кальций. В некоторых случаях через среду продумают воздух, обогащенный 1-5% углекислоты.
Потребности гетеротрофных микроорганизмов не могут быть удовлетворены только углекислотой. Для их развития среда должна содержать органические соединения. В зависимости от индивидуальных особенностей гетеротрофы способны использовать различные соединения углерода – кислоты, спирты, углеводы, углеводороды, ароматические соединения.
