- •1. Определение биотехнологии, основные направления. Особенности биотехнологических процессов.
- •2. Краткий исторический очерк развития биотехнологии. Новейший этап биотехнологии. Особенности создания продуцентов нового поколения.
- •3. Задачи биотехнологии в решении проблем здоровья человека и человечества.
- •4. Задачи биотехнологии в решении энергетических проблем: перспективы получения экологически чистых источников энергии.
- •5. Отличия биотехнологических процессов от химических и агротехнических.
- •6. Понятие типовая биотехнологическая система биосинтеза продуктов, характеристика ее основных стадий.
- •7. Продуценты биотехнологических процессов: прокариоты, эукариоты, ферментные препараты, культуры клеток и тканей растений и животных.
- •8. Использование продуцентов прокариот для получения микробных биомасс: вакцин, пробиотиков и пищевых продуктов.
- •10. Особенности и типы метаболизма микроорганизмов, условия культивирования микроорганизмов- автотрофов и гетеротрофов.
- •11. Культивирование клеток животных. Получение гибридов: цели и условия культивирования.
- •12. Цели и методы создания и культивирования суспензионных культур растений. Характеристика протопластов растений: цели и методы получения.
- •13. Цели создания и культивирования культур клеток животных.
- •14. Питательные среды для культивирования микроорганизмов. Жидкофазное и твердофазное культивирование продуцентов.
- •15. Методы определения численности клеток и биомассы продуцентов.
- •16. Аппараты для культивирования микроорганизмов-продуцентов.
- •17. Характеристика процессов ферментации.
- •18. Классификация процессов ферментации по фазе культивирования продуцента.
- •19. Основные и вспомогательные стадии биотехнологического процесса.
- •20. Постферментационная стадия: процессы, выполняемые в постферментационную стадию.
- •31. Оптимизация биотехнологических процессов по методу «крутого восхождения-спуска» Бокса–Уилсона.
- •32. Блочные принцип математического моделирования биотехнологических систем.
- •33. Методы отделения биомассы продуцентов от культуральной жидкости.
- •34. Модели, учитывающие влияние субстрата на рост популяции микроорганизмов: модель Перта, модель Андрюса.
- •35. Модели, учитывающие влияние субстрата на рост популяции микроорганизмов: модель Кобозева, модель Блэкмана, модель Моно.
- •36. Определение факторов оптимизации. Методы математического планирования экспериментов.
- •37. Модели, учитывающие влияние продуктов метаболизма на скорость роста культур.
- •38. Основные характеристики процесса роста продуцентов: скорость роста, время генерации, удельная скорость роста. Рост продуцентов в условиях глубинного и поверхностного культивирования.
- •39. Особенности метаболизма фотоавтотрофов и фотогетеротрофов. Использование в биотехнологии.
- •40. Обобщенная технологическая схема получения биомасс продуцентов. Удельная скорость роста продуцента.
- •45. Характеристика ферментов: строение, каталитическая активность ферментов.
- •47. Характеристика основных способов получения микробных ферментных препаратов.
20. Постферментационная стадия: процессы, выполняемые в постферментационную стадию.
Постферментационная стадия обеспечивает получение готовой товарной продукции и также обезвреживание отходов и побочных продуктов. Культуральная жидкость, образующаяся в процессе ферментации, представляет собой сложную многофазную систему: в водной фазе содержатся клетки продуцента, продукты их жизнедеятельности, непотребленные компоненты питательной среды, мельчайшие капельки жира и пузырьки воздуха.
-Первым этапом постферментационной стадии является фракционирование культуральной жидкости и отделение взвешенной фазы - биомассы. Наиболее распространенный метод для этих целей - сепарация, осуществляемая в специальных аппаратах - сепараторах, которые работают по различным схемам, в зависимости от свойств обрабатываемой культуральной жидкости.
1)Фракционирование экстрактов биомассы
Важнейшей задачей биотехнологии является очистка целевого продукта из этой сложной смеси. Целевой продукт может находиться либо внутри клетки, либо вне ее - в культуральной жидкости.
-Разделение суспензий. Одним из способов разделения суспензий является седиментация - разделение культуры как дисперсной системы на дисперсную фазу и дисперсионную среду (в нашем случае - клетки продуцента и культуральную жидкость). Разделение фаз в простейшем случае может быть достигнуто длительным отстаиванием, в процессе
которого клетки продуцента, отличающиеся по плотности от культуральной жидкости, рано или поздно либо выпадут в осадок, либо всплывут.
-Кроме того, поскольку мы имеем дело с живой системой, в которой продолжаются биохимические системы, возможно понижение концентрации целевого продукта за счет деградации его клеточными ферментами. Все это приводит к необходимости ускорить процесс разделения системы. Для этого используют центрифуги (центрифугирование).
С их помощью можно решить следующие технологические задачи:
- разделение суспензии на осадок и раствор;
- разделение эмульсий на две жидкие фазы различной плотности.
2)Разрушение клеточной массы (дезинтеграция)
Наиболее распространенными в промышленности являются физические методы, среди которых чаще всего применяют баллистические методы дезинтеграции. Сущность этой группы методов состоит в том, что биомассу подвергают воздействию удара или истирания
-Другим способом механической дезинтеграции клеток является экструзия. Сущность этого метода заключается в том, что суспензию клеточной массы под высоким давлением продавливают через узкое отверстие в камеру с нормальным давлением. При этом из-за большого перепада давления вода, которая попала в клетки, быстро выходит из них и при этом разрушает клеточную стенку. Кроме этого происходит разогрев и также необходимо охлаждение во избежание потерь продукта из-за термоинактивации
Химические методы разрушения клеток. Как различные методы механической дезинтеграции, так и ультразвуковая дезинтеграция биомассы основаны на использовании механического разрыва клеточной оболочки - либо ее абразивное разрушение, либо разрыв ее за счет осмотических сил.
В ряде случаев более удобным оказывается разрушение клеточной оболочки за счет перевода в раствор отдельных ее компонентов, т. е. изменения ее состава и структуры, что делает ее более проницательной для клеточного содержимого. Одним из таких методов является детергентный лизис клеток. Биомасса продуцента в этом случае обрабатывается каким-либо из детергентов, который растворяет липидные компоненты клеточной стенки, после чего внутриклеточные компоненты через образовавшиеся поры вытекают в окружающую среду.
